ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Researchers devise fast, relatively cheap way of building diamonds

It's geology on fast forward.

Alexandru MicubyAlexandru Micu
February 26, 2020
in Materials, News, Physics, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Crystal That Nature May Have Missed
Huge, rare diamonds help us learn more about the Earth’s mantle
Artificial bacteria-killing cells could win the war against drug resistance
Diamond rain of Neptune and Uranus mimicked in the lab by scientists

The process of making one such faux diamond starts with a handful of white dust that gets compressed in a diamond-lined pressure chamber, then shot with a laser. The combination of extreme pressure and heat turns the raw material into pure diamond — just like Mother Nature makes them.

Raw diamond.
Image credits Robert Matthew Lavinsky.

The process of making one such faux diamond starts with a handful of white dust that gets compressed in a diamond-lined pressure chamber, then shot at with a laser. The combination of extreme pressure and heat turns the raw material into pure diamond — just like Mother Nature makes them.

Diamonds on the cheap

“What’s exciting about this paper is it shows a way of cheating the thermodynamics of what’s typically required for diamond formation,” said Rodney Ewing, Stanford geologist and co-author of the paper.

The process described by the team uses heat and pressure to turn hydrogen and carbon molecules derived from crude oil and natural gas into literal diamonds. It’s not the first process to try and produce the gem, and indeed not even the first successful one at that — but it is currently the cheapest, most efficient one that produces the highest-quality diamonds.

“We wanted to see just a clean system, in which a single substance transforms into pure diamond — without a catalyst,” Sulgiye Park, the study’s lead author and postdoctoral research fellow at Stanford’s School of Earth, Energy & Environmental Sciences (Stanford Earth) told phys.org.

Natural diamonds form hundreds of kilometers beneath the surface from carbon. The ones we can reach and mine out of the ground were moved there, after formation, through ancient volcanic eruptions. The ones the team produces start as a mixture of three powders derived from petroleum and natural gas. These are particles of carbon atoms arranged in the same structure as in a diamond.

Image via Wikimedia.

Diamonds immediately make us think of jewelry, but they do have a lot of other cool uses as well. They’re extremely stable chemically, have nice optical properties, very high heat conductivity, and they are the hardest material we’ve found on this good Earth. Industries ranging from metal processing to medicine rely on diamonds for specialized applications. The team hopes that their process will help make diamonds more accessible and more customizable for such applications.

The paper “Facile diamond synthesis from lower diamondoids” has been published in the journal Science Advances.

Tags: ArtificialdiamondGem

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Chemistry

Scientists Grow Diamonds at Atmospheric Pressure in Liquid Metal and It’s a Game Changer

byTibi Puiu
5 months ago
Future

This Carbon-14 Radioactive Diamond Battery Could Last Longer Than Human Civilization

byTibi Puiu
5 months ago
Geology

Massive 2,492-Carat Diamond Unearthed in Botswana, Second Largest in History

byTibi Puiu
10 months ago
Chemistry

Scientists make diamonds from scratch in only 15 minutes

byTibi Puiu
1 year ago

Recent news

Coolness Isn’t About Looks or Money. It’s About These Six Things, According to Science

July 1, 2025

Ancient Roman Pompeii had way more erotic art than you’d think

July 1, 2025

Wild Orcas Are Offering Fish to Humans and Scientists Say They May Be Trying to Bond with Us

July 1, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.