ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Antarctic ozone hole at its smallest recorded size ever

Who said size doesn't matter?

Alexandru MicubyAlexandru Micu
October 22, 2019
in Chemistry, Environment, Environmental Issues, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

The ozone hole over the Antarctic registered its smallest annual peak on record (tracking began in 1982) according to an announcement by the National Oceanic and Atmospheric Administration (NOAA) and NASA on Monday.

Image credits NASA Ozone Watch.

Each year, an ozone hole forms during the Southern Hemisphere’s late winter as the solar rays power chemical reactions between the ozone molecules and man-made compounds of chlorine and bromine. Governments around the world are working together to cut down on the ozone-depleting chemicals that created this hole, and it definitely helps.

However, the two agencies warn that we’re still far from solving the problem for good. The small peak in the ozone hole’s surface likely comes from unusually mild temperatures in that layer of the atmosphere seen during this year, they add.

Good but not done

NASA and NOAA explain that the ozone hole consists of an area of heavily-depleted ozone in the upper reaches of the stratosphere. This hole is centered on Antarctica, between 7 and 25 miles (11 and 40 kilometers) above the surface. At its largest recorded size in 2019, the hole extended for 6.3 million square miles (September 8) and then shrank to less than 3.9 million square miles (during the rest of September and October). While that definitely sounds like and is a lot of surface, it’s better than it used to be.

“During years with normal weather conditions, the ozone hole typically grows to a maximum of about 8 million square miles,” the agencies said in a news release.

It’s the third time we’ve seen a similar phenomenon — weather systems slowing down stratospheric ozone loss — take place over in the last 40 years. Below-average spikes in the size of the ozone hole were also recorded in 1988 and 2002.

The stratosphere’s ozone layer helps deflect ultraviolet (UV) radiation incoming from the sun. That’s very good news if you like being alive as UV rays are highly energetic and will cause harm to the DNA of living organisms. UV exposure can lead to skin cancer or cataracts for animals and damages plantlife.

A host of chemicals that used to be employed for refrigeration, including chlorofluorocarbons (CFCs) and hydrofluorocarbons (HFCs), break down ozone molecules in the stratosphere — which exposes the surface to greater quantities of UV. These compounds can last for several decades in the atmosphere and are extremely damaging to ozone during that time, breaking it down in huge quantities.

RelatedPosts

One of the largest ecosystems on Earth lives beneath the seafloor and eats radiation byproducts
Average atmospheric CO2 levels last month were the highest we’ve ever recorded, ever
Climate change and ozone layer holes form feedback loop, reports international panel
Human activity is destroying the ozone layer — again

Humanity bunched together to control the production and release of such chemicals under the Montreal Protocol of 1988, which has drastically reduced CFC emissions worldwide. The ozone layer has been steadily recovering since then, but there’s still a long way to go.

“It’s a rare event that we’re still trying to understand,” Susan Strahan, an atmospheric scientist at the NASA’s Goddard Space Flight Center in Maryland, said in a news release. “If the warming hadn’t happened, we’d likely be looking at a much more typical ozone hole.”

The reactions that break down ozone take place most effectively on the surface of high-flying clouds, but milder-than-average temperatures above Antarctica this year inhibited cloud formation and made them dissipate faster, NASA explains. Since there were fewer clouds to sustain these reactions, a considerable amount of ozone made it unscathed. In a divergence from the norm, NOAA reports that there were no areas above the frozen continent this year that completely lacked ozone.

Warming in the shape of “sudden stratospheric warming” events, were unusually strong this year, NOAA adds. Temperatures in September were 29˚F (16˚C) warmer than usual (at 12 mi/19 km altitude) on average, “which was the warmest in the 40-year historical record for September by a wide margin” according to NASA.

Warmer air weakened the Antarctic polar vortex, a current of high-speed air circling the South Pole that typically keeps the coldest air near or over the pole itself, which slowed significantly (from an average wind speed of 161 mph / 260 kmph to 67 mph / 107 kmph). The slowed-down vortex allowed air to sink lower in the stratosphere, where it warmed and inhibited cloud formation. It’s also likely that it allowed for ozone-rich air from other parts of the Southern Hemisphere to move in.

Tags: atmospherecloudslayerozoneradiation

Share32TweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

News

First Complete Picture of Nighttime Clouds on Mars

bySarah Stanley
5 days ago
Agriculture

A Rocket Carried Cannabis Seeds and 166 Human Remains into Space But Their Capsule Never Made It Back

byTudor Tarita
2 months ago
Biology

This Tiny Microbe Can Withstand Extreme Radiation That Would Obliterate Humans. Here’s How It Might Protect Astronauts on a Trip to Mars

byTibi Puiu
8 months ago
Climate

Microplastics May Now Be Messing with Our Weather and Climate. Here’s What That Means

byTibi Puiu
9 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.