ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Oil-contaminated soil made clean, fertile again using just a little bit of heat

Not too much heat, though -- that destroys the soil!

Alexandru MicubyAlexandru Micu
February 2, 2019
in Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Crude-drenched soil can be made clean and fertile again — and all you need is some heat.

Lettuce.
Some of the lettuce grown in treated soil.
Image credits Wen Song / Rice University.

Researchers from Rice University have devised a simple and cost-effective method of cleaning soil contaminated by heavy oil spills. The technique is effective enough to allow for Simpson black-seeded lettuce (genus Lactuca), for whom petroleum is highly toxic, to grow in soil samples scrubbed this way.

Lettuce clean this soil

“We saw an opportunity to convert a liability, contaminated soil, into a commodity, fertile soil,” says Pedro Alvarez, coauthor of the study describing this new method.

Large-volume marine oil spills naturally garner a lot of attention. However, over 98% of oil spills occur on land, the team notes, with over 25,000 such events reported to the Environmental Protection Agency per year. The sheer number of these events and the quantity of soil they contaminate makes it very important that we develop a cost-effective (and actually-effective) remediation process, the team writes.

They turned to the process of pyrolysis, which has been employed in various ways since antiquity. It involves steadily heating a particular substance — soil in our case — while preventing contact with oxygen. The last bit is important as it avoids damaging the fertile soil by hydrocarbons combusting (which cause spikes in temperatures).

“Clays retain water, and if you raise the temperature too high, you basically destroy them,” says study coauthor Kyriacos Zygourakis. “If you exceed 500 degrees Celsius (900 degrees Fahrenheit), dehydration is irreversible.”

The team worked with soil samples from Hearne, Texas, which they contaminated with heavy crude in the lab. These samples were placed into a kiln, where the team experimented with different temperature intervals to see what would work best.

They report that heating samples in a rotating drum at 420°C (788°F) for 15 minutes removed 99.9% of total petroleum hydrocarbons (TPH) and 94.5% of polycyclic aromatic hydrocarbons (PAH) in the soil samples. This is roughly on par with naturally-occurring pollutant levels in uncontaminated soils.

“While heating soil to clean it isn’t a new process,” Zygourakis said, “we’ve proved we can do it quickly in a continuous reactor to remove TPH, and we’ve learned how to optimize the pyrolysis conditions to maximize contaminant removal while minimizing soil damage and loss of fertility.

“We also learned we can do it with less energy than other methods, and we have detoxified the soil so that we can safely put it back.”

The 420°C seems to produce the best cost-result ratio, he adds. Heating samples to 470°C (878°F) did a marginally better at removing contaminants, but used more energy and decreased the soil’s fertility so much as to make it unusable.

RelatedPosts

Scientists crack the code of ancient, mysterious Asian script
The “superstar effect”: how the best chess players affect those around them — and why it matters
Shelter dogs were used to retrieve balls during Brazil Open – and it was awesome
Why do gorillas beat their chest? This study shows they don’t ‘bluff’

The team tested how fertile each treated sample was by trying to grow Simpson black-seeded lettuce, a variety for which petroleum is highly toxic, on the original clean soil, some contaminated soil and several pyrolyzed soils. Plants in the treated soils had a somewhat slow start, they write, but by the 21-day mark, lettuce grown in pyrolyzed soil (with fertilizers or simply water) showed the same germination rates and had the same weight as those grown in clean soil.

To test whether their method actually scrubbed the soil clean of contaminants, rather than just breaking down crude oil, the team enlisted the help of Bhagavatula Moorthy, a professor of neonatology at Baylor College of Medicine. Moorthy studies the effects of airborne contaminants on neonatal development. His tests revealed that while extracts from oil-contaminated soils were toxic to human lung cells, exposing the same cell lines to extracts from treated soils had no adverse effects. This strongly suggests that any airborne particles (such as dust) released by pyrolyzed soils wouldn’t be laced with toxic pollutants like PAHs.

”One important lesson we learned is that different treatment objectives for regulatory compliance, detoxification and soil-fertility restoration need not be mutually exclusive and can be simultaneously achieved,” says Alvarez.

The paper “Pilot-Scale Pyrolytic Remediation of Crude-Oil Contaminated Soil in a Continuously-Fed Reactor: Treatment Intensity Tradeoffs” has been published in the journal Environmental Science & Technology.

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Health

A Chemical Found in Acne Medication Might Help Humans Regrow Limbs Like Salamanders

byTibi Puiu
14 hours ago
Future

Everyone Thought ChatGPT Used 10 Times More Energy Than Google. Turns Out That’s Not True

byTibi Puiu
16 hours ago
Future

World’s Smallest Violin Is No Joke — It’s a Tiny Window Into the Future of Nanotechnology

byTibi Puiu
16 hours ago
Biology

Scientists Created an STD Fungus That Kills Malaria-Carrying Mosquitoes After Sex

byTudor Tarita
17 hours ago

Recent news

A Chemical Found in Acne Medication Might Help Humans Regrow Limbs Like Salamanders

June 11, 2025

Everyone Thought ChatGPT Used 10 Times More Energy Than Google. Turns Out That’s Not True

June 11, 2025

World’s Smallest Violin Is No Joke — It’s a Tiny Window Into the Future of Nanotechnology

June 11, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.