ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Tooth-mounted sensor can track what you eat

The tiny sensor provides objective information about a user's diet.

Tibi PuiubyTibi Puiu
March 26, 2018
in News
A A
Share on FacebookShare on TwitterSubmit to Reddit

Engineers at Tufts University have devised a tiny sensor that is mounted on a user’s tooth to wirelessly relay information on glucose, salt, and alcohol intake. The technology is similar to Radio-Frequency Identification (RFID) that uses radio waves to read and capture information stored on a tag attached to an object.

Credit: SilkLab, Tufts University.

Monitoring dietary intake is of great importance both in a clinical and research setting. Often, doctors and researchers have to take a patient’s self-reported diet at face value. But having an objective indicator of what kind of food a patient is ingesting would be a lot more desirable.

This is why the Tufts’ dietary sensor is so appealing. Previous such sensors employed extensive wiring, a bulky and uncomfortable mouth guard, and frequent replacement of sensors. In contrast, the new monitoring device measures only 2mm x 2mm, comfortably sitting on the surface of a tooth. Because the data it gathers is transmitted wirelessly, the whole setup is minimally invasive.

The sensor is made of three layers: a central layer that absorbs a chemical, say glucose, sandwiched in between two outer layers consisting of square-shaped gold rings. When an incoming radio wave hits the sensor, it absorbs some of the frequencies and reflects the rest back to the transmitter, just like blue paint absorbs wavelengths in the ‘red’ range and reflects the blue back to our eyes. 

RelatedPosts

What is convergent evolution: how unrelated animals can look almost identical
Pluto’s so yesterday! New Horizons buckles up to study the Kuiper Belt
Scientists link properties of individual brain cell size to intelligence
Cockatoo figures out how to use tools – and manufacture them

If the central layer detects, for instance, salt, the electrical properties of the sensor’s middle layer will change. This causes the sensor to absorb and transmit a different spectrum of radiofrequency waves with a varying intensity. This signature response can tell an app connected to a user’s smartphone what kind of nutrients are being ingested.

“In theory, we can modify the bioresponsive layer in these sensors to target other chemicals – we are really limited only by our creativity,” said Fiorenzo Omenetto, corresponding author and the Frank C. Doble Professor of Engineering at Tufts. “We have extended common RFID [radiofrequency ID] technology to a sensor package that can dynamically read and transmit information on its environment, whether it is affixed to a tooth, to skin, or any other surface.”

The findings are slated to appear in the journal Advanced Materials. 

Share60TweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Animals

How Bees Use the Sun for Navigation Even on Cloudy Days

byMihai Andrei
2 days ago
Inventions

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

byMihai Andrei
2 days ago
Physics

When Ice Gets Bent, It Sparks: A Surprising Source of Electricity in Nature’s Coldest Corners

byTudor Tarita
2 days ago
Future

This Teen Scientist Turned a $0.50 Bar of Soap Into a Cancer-Fighting Breakthrough and Became ‘America’s Top Young Scientist’

byTibi Puiu
2 days ago

Recent news

How Bees Use the Sun for Navigation Even on Cloudy Days

September 12, 2025

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

September 12, 2025

When Ice Gets Bent, It Sparks: A Surprising Source of Electricity in Nature’s Coldest Corners

September 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.