ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

This surprising metal beats copper as an ultrathin wire for next-gen electronics

Thin, disordered films of niobium phosphide conduct electricity better than copper, researchers found in a new study.

Tibi PuiubyTibi Puiu
January 13, 2025
in Future, News
A A
Edited and reviewed by Zoe Gordon
Share on FacebookShare on TwitterSubmit to Reddit
A patterned chip with Hall bar devices of ultrathin niobium phosphide film. Credit: Asir Khan / Eric Pop.

In the world of electronics, thinner is often better. But as wires shrink to just a tiny fraction of the width of a human hair, traditional materials like copper falter, struggling to conduct electricity efficiently. Now, scientists at Stanford University have unveiled an unexpected champion: niobium phosphide, a topological semimetal that defies the odds. They found that this material can conduct electricity more efficiently than copper when reduced to ultrathin films — something that could have a major impact on nanoelectronics.

A New Champion in Thin Conductors

“As today’s electronic devices and chips become smaller and more complex, the ultrathin metallic wires that carry electrical signals within these chips can become a bottleneck when they are scaled down,” said Dr. Asir Intisar Khan, a visiting postdoctoral scholar at Stanford and lead author of the study.

Conventional metals like copper lose conductivity dramatically when reduced to thicknesses below 50 nanometers, making them inefficient for the dense circuitry of modern chips.

But Niobium phosphide kicks this trend. As a topological semimetal, its outer surfaces are inherently more conductive than its interior. “Our niobium phosphide conductors show that it’s possible to send faster, more efficient signals through ultrathin wires,” Khan explained. Remarkably, the material’s resistivity decreases as its thickness shrinks. So, it outperforms copper in films thinner than 5 nanometers —even at room temperature.

This ability to maintain conductivity at such scales could have profound implications for the energy efficiency of data centers, which rely on millions of chips to store and process information. “Even small gains add up when many chips are used,” Khan noted.

From Physics to Application

A film a few atoms thick of non-crystalline niobium phosphide conducts better through the surface to make the material, as a whole, a better conductor. Image credit: Il-Kwon Oh / Asir Khan.

This discovery didn’t come easily. Niobium phosphide has been studied in bulk for years. But fabricating it as a non-crystalline film thin enough for nanoelectronics posed unique challenges. The Stanford team had to optimize everything from substrate choice to deposition temperature, which they kept at 400°C to ensure compatibility with existing silicon-based chip manufacturing.

“If you have to make perfect crystalline wires, that’s not going to work for nanoelectronics,” said Professor Yuri Suzuki, a co-author of the study. “But if you can make them amorphous or slightly disordered and they still give you the properties you need, that opens the door to potential real-world applications.”

RelatedPosts

Copper can be an important ally against coronavirus — and most viruses, for that matter
Copper-coated uniforms for medical staff could help shred bacteria in hospitals
Copper foam turns CO2 into useful chemicals
Copper-lined hospital beds harbor up to 95% less bacteria, can help save patient lives

Crucially, niobium phosphide films are not just thinner. They also require lower temperatures to fabricate than traditional crystalline materials, which often require extreme heat. So, they are easier to integrate into state-of-the-art chip designs.

Next Steps

The researchers are now exploring ways to turn their thin films into wires and testing their reliability under real-world conditions. They’re also investigating other topological semimetals to find materials with even better conductivity.

“For this class of materials to be adopted in future electronics, we need them to be even better conductors,” said Xiangjin Wu, a doctoral student at Stanford and a co-author of the study. Early results suggest that niobium phosphide is just the tip of the iceberg.

“We’ve taken some really cool physics and ported it into the applied electronics world. This kind of breakthrough in non-crystalline materials could help address power and energy challenges in both current and future electronics,” added Eric Pop, the study’s senior author.

As devices demand more power in smaller packages, the discovery of such unconventional conductors could usher in a new era of high-efficiency electronics — one ultrathin wire at a time.

The results appeared in the journal Science.

Tags: copperultrathin wire

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Archaeology

This Is How the Wheel May Have Been Invented 6,000 Years Ago

byTibi Puiu
12 hours ago
Health

Vehicle Brake Dust Could Be More Harmful Than Diesel Exhaust to Your Lungs

byTibi Puiu
4 months ago
Health

Copper nanomesh “second skin” could be the future protection against all pathogens

byAlexandru Micu
3 years ago
Health

Copper can be an important ally against coronavirus — and most viruses, for that matter

byMihai Andrei
5 years ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.