ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Storing solar energy: Researchers pave the way for artificial photosynthesis

This could be big for solar energy.

Mihai AndreibyMihai Andrei
March 6, 2018
in News, Renewable Energy
A A
Share on FacebookShare on TwitterSubmit to Reddit

A team of US and Chinese researchers has developed a new, dual-atom catalyst to serve as a platform for artificial photosynthesis.

Image credits: Department of Energy.

Solar energy has become increasingly cheaper and more effective, but the problem of energy storage still plagues renewables. Harnessing solar energy is a lofty goal, but being able to store and distribute it when it’s cloudy or dark is what researchers are striving for.

In a way, it’s like artificial photosynthesis. Just like plants convert light energy into chemical energy that can later be released to fuel their activities, scientists want to store solar energy in a way that can be used later on.

Our research concerns the technology for direct solar energy storage,” said Boston College Associate Professor of Chemistry Dunwei Wang, a lead author of the report. “It addresses the critical challenge that solar energy is intermittent. It does so by directly harvesting solar energy and storing the energy in chemical bonds, similar to how photosynthesis is performed but with higher efficiencies and lower cost.”

Image in public domain.

Wang and his colleagues have developed a catalyst (a substance that causes a chemical reaction to occur but is not itself involved in the reaction) that greatly enables this process. Essentially, the technique uses water, carbon dioxide, and solar energy to produce energy that can be routinely stored and then sent through the power grids.

Most catalysts are single-atom, with few teams ever exploring “atomically dispersed catalysts,” which feature two atoms. Wang and his colleagues synthesized a two-atom iridium heterogeneous catalyst, using methods that are relatively facile and cheap. The catalyst exhibited an outstanding stability and high activity toward water oxidation — an essential process in natural and artificial photosynthesis.

The team confirmed the structure and performance of the catalyst through X-ray measurements, using Lawrence Berkeley National Laboratory’s Advanced Light Source. The results were so good they impressed even Wang, who was surprised by the simplicity and durability of the catalyst, as well as the high activity toward the desired reaction of water oxidation.

He says that for the first time, we’re getting a glimpse of the full potential of such catalysts, adding a much-needed innovation in the renewable energy ecosystem.

RelatedPosts

Air pollution challenges solar power expansion in China
A CEO’s pay is enough to train all the company’s laid-off coal miners for jobs in sustainable energy
Scotland’s wind turbines are getting better and better
Thursday, Denmark produced 140% of its energy needs from wind

“[Researchers wondered] what the smallest active and most durable heterogeneous catalyst unit for water oxidation could be. Previously, researchers have asked this question and found the answer only in homogeneous catalysts, whose durability was poor. For the first time, we have a glimpse of the potential of heterogeneous catalysts in clean energy production and storage.”

Journal Reference: Yanyan Zhao el al., “Stable iridium dinuclear heterogeneous catalysts supported on metal-oxide substrate for solar water oxidation,” PNAS (2018).

Tags: catalystrenewable energy

Share429TweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Future

Sinking Giant Concrete Orbs to the Bottom of the Ocean Could Store Massive Amounts of Renewable Energy

byTibi Puiu
1 week ago
Agriculture

America’s Cornfields Could Power the Future—With Solar Panels, Not Ethanol

byTudor Tarita
2 months ago
Climate

This Solar-Powered Device Sucks CO2 From the Air—and Turns It Into Fuel

byTibi Puiu
2 months ago
News

For the first time ever, wind and solar produced more electricity than coal in the US

byTudor Tarita
3 months ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.