Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → News

Self-shading windows switch from transparent to opaque, no power required

Who needs curtains when you can flip a switch and insta-magically change your windows' opacity.

Tibi Puiu by Tibi Puiu
August 15, 2016
in Chemistry, News, Science

Self-shading windows MIT
(c) MIT, Dinca

MIT researchers creatively used  electrochromic materials which change colour and transparency in response to an applied voltage to design a new class of self-shading windows. When an electrical current is applied, the windows can swiftly change from transparent to opaque, or vice-versa. The power required to trigger the change is minimal. Moreover, to remain in a certain state, no power is required.

Curtains are so last century

Electrochromic windows aren’t exactly new. The Boeing 787 uses these materials for its cabin windows to prevent bright sunlight from glaring the crew. When the voltage is turned on, however, it takes good a couple of minutes before the windows go dark.

This happens because it takes time for the electrons in the material to change charge. To create a colour-changing effect, positive ions need to move through the material, but these move far slower than electrons. Also in regard to previous self-shading windows like those in the 787, MIT’s professor of chemistry Mircea Dincă and lead researcher of the current paper, says these sort of materials don’t change completely from transparent to black.

To make a self-shading window that transforms fast and completely between transparent and opaque, the MIT team used sponge-like materials called metal-organic frameworks (MOFs). These materials conduct both electrons and ions at high speeds and have been used previously by Dincă’s team to make them turn from clear to shades of blue or green. Now, their new material made by mixing an organic material and a metal salt, completely blocks or lets light pass through.

“It’s this combination of these two, of a relatively fast switching time and a nearly black color, that has really got people excited,” Dincă says.

Besides avoiding glare, the new material could prove very useful if incorporated into residential or industrial windows. Just by flipping a switch, you can make the windows let less light through which might save a lot of energy by offsetting air conditioning. Once the sun is ready to set, you can adjust the windows to let sunlight through so you don’t need to turn on the artificial lights.

What’s really interesting is that preliminary tests show only an initial voltage needs to be applied to change the opacity of the windows. No further power is required for the material to maintain its current state. Power is required only when the user wants to revert the material to its former state, whether transparent or opaque.

The results were published in the journal Chem.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Citrus fruit stands poised to make transparent wood more sustainable, stronger, and more transparent
  2. Air pollution inside your car is 40% higher during traffic jams, so keep windows closed and switch fans off
  3. ‘Solar windows’ change from transparent to tinted at high temperatures, blocking the sun while generating electricity
  4. Why transparent solar cells could replace windows in the near future
  5. How much area would be required to power the world (with solar panels alone)
Tags: mitwindow

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW