ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Bouncing lasers might enable autonomous cars to literally see around the corner

Such technology could one day save lives.

Tibi PuiubyTibi Puiu
March 5, 2018
in News, Physics
A A
Share on FacebookShare on TwitterSubmit to Reddit
Illustration of the non-line-of-sight imaging system. Credit: Stanford Computational Imaging Lab.
Illustration of the non-line-of-sight imaging system. Credit: Stanford Computational Imaging Lab.

Researchers at Stanford University have devised a novel algorithm which enables them to reproduce images of objects hidden from sight. An autonomous vehicle outfitted with a laser and high-precision photon detector using this technology could potentially see a child running after a bouncing ball on the street around the corner, for instance, and alert the vehicle that it should stop.

“It sounds like magic but the idea of non-line-of-sight imaging is actually feasible,” said Gordon Wetzstein, assistant professor of electrical engineering and senior author of the new paper.

Organisms ‘see’ by absorbing the light that bounces off various surfaces. The reflected photons trigger a nervous signal which gets processed in the brain — it is this step that ultimately forms our sense of sight. The Stanford researchers employed a photon receptor (similar to a retina) alongside a laser which shot pulses at a wall. These pulses bounce around the corner of the wall and off objects that are obstructed, eventually finding their way back to the detector. The scan took anywhere from two minutes to an hour, depending on conditions such as lighting and the reflectivity of the hidden object.

Once the scan is complete, an algorithm reconstructs the paths the captured photons took, revealing an image that shows whatever objects lie behind the corner. The algorithm is so efficient it does its job in less than a second and can be run on a regular laptop. What’s more, Wetzstein is confident his team can enhance the algorithm to perform nearly instantaneously once a scan is complete.

This isn’t the first “see-around-the-corner” system. However, where this research shines is in the algorithm’s unprecedented efficiency, without which such a system would be extremely limited, to the point of being useless.

“A substantial challenge in non-line-of-sight imaging is figuring out an efficient way to recover the 3-D structure of the hidden object from the noisy measurements,” said David Lindell, graduate student in the Stanford Computational Imaging Lab and co-author of the paper. “I think the big impact of this method is how computationally efficient it is.”

Graduate student David Lindell and Matt O'Toole, a post-doctoral scholar work in the lab. Credit: Stanford News Service.
Graduate student David Lindell and Matt O’Toole, a post-doctoral scholar work in the lab. Credit: Stanford News Service.

One prime application for non-line-of-sight imaging would be for autonomous cars, which are already equipped with LIDAR-based guidance systems. These intentionally ignore scattered light particles, which the Stanford technique exploits to image objects around the corner. The technique could also prove very useful for aerial vehicles trying to see through foliage or for giving rescue teams the ability to find people blocked from view by walls and rubble.

Next, the team plans on tweaking their system so it can handle real-world variability and complete scans more quickly. Right now, it can’t perform very well in low ambient light or when the imaged objects are distant. The technology is already particularly adept at picking out retroreflective objects, such as safety apparel or traffic signs. This might prove useful to identify things such as road signs, safety vests, and road makers that are typically obstructed.

“This is a big step forward for our field that will hopefully benefit all of us,” said Wetzstein. “In the future, we want to make it even more practical in the ‘wild.'”

The findings were reported in the journal Nature. 

RelatedPosts

Cars can hallucinate, too — and it’s a problem
Self-driving cars might generate hundreds of billions in revenue
KFC introduces self-driving trucks to sell chicken without human contact
Tesla’s first self-driving accident just happened. It’s time to start a serious discussion
Tags: autonomous carself-driving car

Share26TweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Future

Musk’s DOGE Fires Federal Office That Regulates Tesla’s Self-Driving Cars

byTibi Puiu
4 months ago
News

Cars can hallucinate, too — and it’s a problem

byMihai Andrei
2 years ago
Future

KFC introduces self-driving trucks to sell chicken without human contact

byFermin Koop
5 years ago
Credit: Wikimedia Commons
Science

The imminent self-driving car revolution might the best thing to happen to motorcyclists

byTibi Puiu
9 years ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.