ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Scientists find universal law of nature that may govern all living things

Sensory adaptation follows the same response curve across all organisms, scientists have proposed in a new study.

Tibi PuiubyTibi Puiu
October 28, 2021
in Biology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

Imagine walking out of the subway onto a busy street or going to a loud concert with flashing lights. At first, you’re highly stimulated by the roar of the bustling street or the strobe lights, but then you naturally get used to it. Without this adaptive ability, we’d all go mad, especially considering the number of stimuli we’re bombarded with on a daily basis. And it’s not just humans either. It could be that all organisms follow the same physiological adaptation curve, governed by a universal law of physiology recently uncovered by researchers at the University of Toronto.

Professor Willy Wong. Credit: Matthew Tierney / University of Toronto Engineering.

The team of researchers who came across this universal relationship of physiology was led by Prof. Willy Wong. Although the findings have huge implications for biology, Wong is actually a professor of biomedical and computer engineering. Previously, he made important contributions to brain-machine interfaces, such as devising a retinal prosthesis that restores partial vision to blind patients.

It was this work at the interface between senses and the brain that eventually led him down a rabbit hole where he noticed our response to different stimuli follows a surprisingly similar curve. And it all seems to be owed to how neurons communicate.

In order to communicate with one another, neurons fire a nerve impulse known as an action potential. This action potential, which always fires at the same intensity, is activated only once a certain threshold is reached.

“Action potentials don’t come in half measures,” says Wong. “Either you get one or you don’t. If you do, the neuron needs some time to recharge before it can fire another. In adaptation, the rate of action potential generation falls gradually to some non-zero steady state.”

In their new study, Wong and colleagues compared 250 measurements of adaptation from different fields of sensory psychology and found they all converged to a single equation. This very simple equation describes the adaptation response in all animals, from vertebrates like mammals to invertebrates like insects, and is valid for all five senses: vision, hearing, touch, taste, and smell.

The equation can be stated as the steady-state response (SS) equals the square root of the product between the activity before the application of the stimulus (SR) and the peak activity that occurs at the first presentation of the stimulus (PR). In visual format, this equation describes a curve that instantly rises when we encounter a new stimulus, but then steadily tapers off until we reach a new equilibrium.

RelatedPosts

Nobel Prize for Medicine awarded for circadian rhythm research
2015 Nobel prize for Physiology or Medicine Awarded
Scientists are surprised by the real reason people blush
Graph showing the idealized sensory adaptation response. Credit: Willy Wong.

The equation applies to virtually all living things, including jelliyfish, which are some of the oldest multicellular organisms.

“If you shine a light on them, they either fly to the light or away from it—but only because their photoreceptors are hardwired to their motor output,” he says. “Which raises the question, is this equation universal? In the future, if we find aliens with exobiology never seen on this planet, could they also be constrained by the same limitations or principles?”

The findings are based on data from hundreds of unrelated independent studies, which used different methods and were performed across different time periods spanning decades. Although this is by no means absolute proof, the unified nature of this research strengthens the notion that all things process stimuli according to a universal law.

“All this data was there,” says Wong, “All conformed to the same geometric mean relationship. It’s not dependent on the researcher, on what equipment was used, or on the organism. From that perspective, it is universal.”

The study was published this week in the journal Frontiers in Human Neuroscience.

Tags: Physiology

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Mind & Brain

Scientists are surprised by the real reason people blush

byTibi Puiu
1 year ago
Health

Nobel Prize for Medicine awarded for circadian rhythm research

byMihai Andrei
8 years ago
Image via wattsupwiththat
Science

2015 Nobel prize for Physiology or Medicine Awarded

byAlexandru Micu
10 years ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.