ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Over 70% of the world’s aquifers could be tainted by 2100

Over 2.5 billion people depend on aquifers for fresh water, but rising seas and climate change are pushing saltwater into these crucial reserves.

Mihai AndreibyMihai Andrei
December 13, 2024
in Climate, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

Coastal regions face a growing peril hidden beneath their surfaces — saltwater intrusion. Over 2.5 billion people rely on aquifers (natural underground water reservoirs) for fresh water, and if enough saltwater infiltrates into aquifers, it can have devastating effects, making the water unsuitable for drinking and agriculture. This salinization is a major global threat, yet it’s rarely discussed.

According to a new study, this risk was underestimated. By 2100, 77% of aquifers in the coastal areas below are expected to experience significant saltwater intrusion, and climate change is a key factor.

Coastal locations, such as Drakes Bay on the Point Reyes peninsula in Northern California, are increasingly vulnerable to sea level rise. Image credit: NOAA/NMFS/WCR/CCO.

If you live in a coastal area, “saltwater intrusion” is a concept you may want to look into. In coastal aquifers, freshwater naturally pushes against seawater, maintaining a boundary known as the freshwater-saltwater interface. When this balance is disrupted — whether by rising seas or reduced groundwater recharge — saltwater infiltrates further inland.

Saltwater intrusion is primarily driven by two processes: recharge decline and sea level rise. Recharge occurs when rainwater or surface water seeps into the ground to replenish aquifers. Climate change reduces this recharge, allowing saltwater to infiltrate further inland. Meanwhile, climate change also affects sea level rise, which in turn, pushes seawater inland, displacing the freshwater boundary.

Low-lying regions, such as those in Southeast Asia, are particularly vulnerable to this encroachment due to their elevation and proximity to the coast, but all coastal aquifers are threatened by these processes.

Illustration of the ground surface and where the fresh water and salt water boundaries meet
The freshwater/saltwater interface. Image via Wiki Commons.

For the first time, researchers have assessed saltwater intrusion on a global scale, combining sea level rise and recharge projections with the unique characteristics of coastal regions. Using data from over 60,000 coastal watersheds, the study provides a stark forecast: three-quarters of global coastal areas will experience measurable saltwater intrusion by 2100.

How bad is it?

The researchers used information on watersheds collected in HydroSHEDS, a database managed by the World Wildlife Fund that uses elevation observations from the NASA Shuttle Radar Topography Mission. To create a forecast, the team used a model accounting for numerous variables including groundwater recharge, water table rise, fresh- and saltwater densities, and coastal migration from sea level rise.

RelatedPosts

The cute and bizarre echidnas blow snot bubbles to beat the heat waves
The planet is on “red alert” because of insufficient climate action, UN warns
First permanent English colony in the US is facing a climate disaster
Earth didn’t have a high-carbon atmosphere until 1965, study showed

According to the model 2100, rising sea levels alone will cause saltwater to infiltrate 82% of the coastal watersheds studied, pushing the freshwater-saltwater boundary inland by up to 656 feet (200 meters). In contrast, declining groundwater recharge due to climate change will drive saltwater intrusion in 45% of coastal watersheds, pushing the transition zone even farther — up to three-quarters of a mile (1,200 meters) inland.

If we continue in a “business as usual” scenario, saltwater intrusion could compromise drinking water supplies and agriculture. Almost 3 in 4 aquifers could become contaminated.

Groundwater aquifers (coastal and non-coastal) are already in big trouble. Here, purple regions are likely to suffer from groundwater depletion, with declining groundwater tables. Many aquifers may be depleted or unusable within a couple of decades. Image credits: Herbert, C., Döll, P. (2019).

Southeast Asia, with its low-lying deltas and dense populations, is highly vulnerable to sea level rise. Even with stable or increasing recharge, rising seas will push saltwater further inland. Countries like Vietnam, Indonesia, and Bangladesh could see widespread salinization of groundwater. This will affect millions of people who rely on these reserves.

In the United States, coastal regions like Florida and the Gulf Coast face a dual threat from declining recharge and rising sea levels. Urban infrastructure, including water supply systems and building foundations, is particularly at risk.

“As sea levels rise, there’s an increased risk of flooding everywhere. With saltwater intrusion, we’re seeing that sea level rise is raising the baseline risk for changes in groundwater recharge to become a serious factor,” says co-author Ben Hamlington, a climate scientist at JPL and a co-leader of NASA’s Sea Level Change Team.

Can we do anything about it?

Saltwater intrusion is not a distant threat — it is a present and growing danger for coastal communities worldwide.

Addressing this challenge will require global cooperation, regional planning, and local action. One effective way to combat saltwater intrusion is by increasing groundwater recharge. Managed Aquifer Recharge (MAR) projects involve artificially replenishing aquifers by directing excess rainwater, treated wastewater, or stormwater into recharge basins or injection wells. This helps maintain pressure in the aquifer, pushing back against intruding seawater.

Another approach that can work is managed retreat. As the name implies, it involves taking gradual steps to relocate infrastructure away from vulnerable coastlines. At the same time, you would build physical barriers or natural barriers to protect against sea level rise. Seawalls and levees serve as physical barriers while mangroves and reefs are effective natural barriers. However, this measure is bound to be extremely unpopular — who wants to give up coastal property?

Lastly, we should also simply reduce our use of groundwater. Groundwater depletion is a major challenge to maintaining aquifer health. Over-pumping of groundwater, often for agriculture or urban supply, accelerates saltwater intrusion by lowering aquifer pressure. Implementing sustainable water use policies, such as regulated groundwater extraction, efficient irrigation systems, and water recycling, can help preserve freshwater resources.

Ultimately, a mix of natural, engineered, and policy-driven solutions is needed to safeguard coastal groundwater. Investing in these measures today can protect freshwater supplies and ensure the sustainability of coastal communities for generations to come. This study comes in handy because it quantifies how aquifers around the world will be in trouble. Furthermore, it can also help us to take protective measures in areas that don’t have expertise of their own.

“Those that have the fewest resources are the ones most affected by sea level rise and climate change,” Hamlington said, “so this kind of approach can go a long way.”

Tags: aquifersclimate changecoastal regionsenvironmental threatgroundwatergroundwater depletionGulf Coastmanaged aquifer rechargesalinizationsaltwater intrusionsea level risesustainabilitywater supply

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Future

Why Perovskite LEDs Might Soon Replace Every Light in Your Home

byTibi Puiu
1 week ago
Champiñón Hongos Naturaleza Setas Reino Fungi
Animal facts

What do Fungi, Chameleons, and Humans All Have in Common? We’re all Heterotrophs

byShiella Olimpos
1 week ago
Climate

Climate Change Is Rewriting America’s Gardening Map and Some Plants Can’t Keep Up

byGrace van Deelen
2 weeks ago
Climate

Scientists Create “Bait” to Lure Baby Corals Back to Dying Reefs

byMihai Andrei
4 weeks ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.