ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Scientists find a new way to regrow nerves in spinal injuries

In experiments on rats with spinal cord injuries, the rodents improved their walking ability following treatment.

Tibi PuiubyTibi Puiu
March 12, 2020
in Health, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

Researchers have demonstrated a novel method that might regrow nerve cells at the site of spinal injuries.

Writing in the Journal of Neuroscience, scientists at the University of Aberdeen in Scotland delivered a treatment of hydrogel to rat nerve cells in a cell-culture dish.

The hydrogel contains a substance — a soluble agonist called S-220 — that activates a molecule called Epac2. Previous studies had shown that Epac2 is heavily involved in nerve growth during embryonic development.

Due to the nature of the hydrogel, the drug is released slowly, which can provide a scaffold that physically supports injured nerve cells during the regeneration process.

After the team found that the hydrogel successfully activated Epac2, they proceeded with stage two, administering it to rats with spinal injuries. The hydrogel significantly enhanced axonal outgrowth across the lesions and the rats themselves showed significant improvements in their ability to walk.

“This is something that other researchers have tried around the world in many different ways, but we found that our method actually works and is also very efficient,” said Dr. Derryck Shewan of the Institute of Medical Sciences at the University of Aberdeen.

That’s not all. The Epac2-activating drug not only ‘turbo-charged’ the injured nerve cells, promoting regeneration, but it also significantly reduced the inhibitory nature of the injury site, further enhancing recovery.

“The injured spinal nerves not only regenerated more robustly, they sensed the surrounding environment was not as inhibitory anymore, so the damaged nerves could more successfully regrow and cross the injury site,” said Dr. Guijarro-Belmar, co-author of the new study.

Spinal cord injuries can be devastating, potentially paralyzing patients below the site of injury. Currently, there is no cure for such damage to the spinal cord. But, in the future treatments based on self-assembling hydrogels injected in the spinal cord could provide speed up recovery and replace invasive surgery.

RelatedPosts

New hydrogel system could help us clean micropollutants from water quickly and sustainably
Wireless brain-interface boasts promising start
Scientists coax mice with injured spinal cords to regrow nerve fibers, something deemed impossible not too long ago
Adding fibers to hydrogel, a soft material mostly made of water, makes it 5 times tougher than steel

Elsewhere, scientists at the University of Michigan devised a nanoparticle solution that prevents spinal scars from forming, as well as boosts the immune response to promote healing rather than cause damage to nerve cells. In combination with this hydrogel therapy or other similar ones, it may prevent paralysis.

“Repairing the damaged spinal cord remains one of the greatest challenges in medicine,” said Mark Bacon, Executive and Scientific Director from International Spinal Research Trust who partly funded the research.

Tags: hydrogelparalysisspinal injury

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Health

Paralyzed man can stand again after receiving stem cell treatment in Japan

byTibi Puiu
5 months ago
Future

A paralyzed man just piloted a virtual drone using his brain

byMihai Andrei
7 months ago
Inventions

Futuristic Contact Lens Delivers Medication Directly to Your Eye

byMihai Andrei
9 months ago
Hydrogels developed at MIT can be used to remove micropollutants from water. Image credits: Sebastian Gonzalez Quintero/MassArt.
Environment

New hydrogel system could help us clean micropollutants from water quickly and sustainably

byFermin Koop
2 years ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.