ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Light-bending material could bridge quantum and classical physics

We're closer than ever to a Theory of Everything.

Alexandru MicubyAlexandru Micu
December 9, 2016
in News, Physics
A A
Share on FacebookShare on TwitterSubmit to Reddit

Scientists may have found a substance that allows them to finally link the opposing models of quantum and classical physics. In time, this finding could allow them to understand why the classical model breaks down at an quantum level, why quantum physics doesn’t seem to work at visible scales, and how the two can be reconciled.

Flow
Image credits SB Archer / Flickr

We know these two models of understanding the physical world — the quantum for really small bits and the classical for larger bits — don’t mix well together. Usually when one is in charge, the other is completely absent. Most of the rules of classical physics break down at the quantum level — gravity, for example, doesn’t seem to be doing much on the atomic level even as it’s literally holding the universe together overall. There’s nothing in the rules of classical physics that can explain quantum entanglement, either.

Scientists know that there must be something tying the two models together, but we’ve yet to find even a clue of what that is. Now, thanks to a newly developed material, scientists have a chance to see quantum mechanics in action on a scale visible to the naked eye — offering hope of finding a bridge between the two models.

“We found a particular material that is straddling these two regimes,” says team leader N. Peter Armitage, from Johns Hopkins University.

“Usually we think of quantum mechanics as a theory of small things, but in this system quantum mechanics is appearing on macroscopic length scales. The experiments are made possible by unique instrumentation developed in my laboratory.”

The material Armitage developed is a topological insulator, a class of material first theoretically predicted in the 1980s, and first produced in 2007. Topological insulators are conductive on their outer layer while being insulators on the internal one. This causes the electrons flowing along the material to do some pretty weird stuff. For example, Armitage and his team found that a beam of terahertz radiation (sometimes called THz or T-rays – an invisible spectrum of light) passing through their bismuth-selenium topological insulators can be made to rotate slightly — an effect only observed at the atomic scale up to now.

This rotation could be predicted with the same mathematical systems that govern quantum theory — making this the first time researchers have witnessed quantum mechanics occurring on the macro scale. It could form the basis on which the quantum and classical models can be linked, the ‘theory of everything’ that scientists have been trying to find for decades.

The experiment is definitely “a piece of the puzzle” but according to Armitage, there’s still a lot of work to be done before this link is fully understood. He hopes that one day we’ll have a completed picture of physics, and new materials like the team’s topological insulator might be the way we get there.

The full paper “Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator” has been published in the journal Science.

RelatedPosts

Light and salt crystals could help usher in the next generation of data storage
What exactly is a photon? Definition, properties, facts
Squished-booms: looking at the behavior of underwater explosions
Dark matter discovered, or at least rumor has it
Tags: ClassicallightPhysicsquantumtopological insulator

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

News

This Unbelievable Take on the Double Slit Experiment Just Proved Einstein Wrong Again

byTibi Puiu
2 weeks ago
A graphical depiction of an atom with the electrons around the nucleus.
News

After 100 years, physicists still don’t agree what quantum physics actually means

byMihai Andrei
3 weeks ago
Mind & Brain

Your Brain Gives Off a Faint Light and It Might Say Something About It Works

byTibi Puiu
3 weeks ago
Inventions

Scientists Detect Light Traversing the Entire Human Head—Opening a Window to the Brain’s Deepest Regions

byTudor Tarita
2 months ago

Recent news

AI Visual Trickery Is Already Invading the Housing Market

August 19, 2025

The World’s First Laptop Weighed 24 Pounds and Had a Five Inch Screen, But It Changed Computers Forever

August 19, 2025

Solar Trees Could Save Forests From Deforestation While Generating the Same Power as Solar Farms

August 19, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.