ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

New laser tech could be the life-sniffing ‘nose’ for NASA’s next Mars rover

An innovative technology could drastically up our chances of finding alien life inside the solar system.

Tibi PuiubyTibi Puiu
November 2, 2016
in News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit
Artist impression of how the laser-fluorescence instrument could operate on Mars. Credit: NASA
Artist impression of how the laser-fluorescence instrument could operate on Mars. Credit: NASA

One of the biggest concerns NASA scientists looking for alien life on Mars have is that they might one day find biological signatures — only to later find these were actually contaminants brought from Earth. An upgrade to a laser radar called LIDAR, typically used to monitor air quality or map large areas, could solve this concern and make investigations a lot more efficient, say NASA scientists.

A light nose

The instrument is called  Bio-Indicator Lidar Instrument, or BILI. Branimir Blagojevic, now a NASA technologist at the Goddard Space Flight Center in Greenbelt, used to work for the company that first made the device. At NASA, Blagojevic used his experience and skills to turn the technology into a working prototype that shows that the same instruments used to monitor biohazards in public places could be effective at detecting organic biosignatures on Mars, too.

LIDAR is a remote sensing instrument that is very similar in working principle to radar. However, instead of radio waves, LIDAR uses light shone by lasers to measure distances from a target, but also determine the composition of particles in the air.

BILI is essentially a fluorescence-based lidar that can detect chemicals based on their fluorescent emissions. Fluorescence-based sensing instruments have been widely employed by NASA in its climate research, but soon the space agency will also use it in planetary studies. “If the agency develops it, it will be the first of a kind,” Blagojevic said.

Because it can detect small levels of complex molecules in real time from a distance of several hundred meters, BILI could serve as the nose of NASA’s next rover mission, planned for 2020. The instrument can be used to scan the bio-signatures in plumes above recurring slopes which are very challenging to travel for a rover. It could also be targeted on ground-level aerosols with no risk of sample contamination.

For now, Blagojevic envisions BILI positioned on a rover’s mast. Initially, the instrument first scans for dust plumes, then, once detected, the command is issued for two ultraviolet lasers to shine light pulses at the dust. The illumination causes the dust clouds to resonate or fluoresce. It’s then only a matter of analyzing this signal and comparing it with known signatures from a database to detect organic particles. The same analysis also reveals the particles’ size.

“If the bio-signatures are there, it could be detected in the dust,” Blagojevic said in a statement for the press.

“This makes our instrument an excellent complementary organic-detection instrument, which we could use in tandem with more sensitive, point sensor-type mass spectrometers that can only measure a small amount of material at once,” Blagojevic said. “BILI’s measurements do not require consumables other than electrical power and can be conducted quickly over a broad area. This is a survey instrument, with a nose for certain molecules.”

Why stop at a rover, though? Indeed, NASA has plans to mount BILI or a later version onto spacecraft. NASA could then significantly increase its odds of detecting biosignatures in the solar system.

RelatedPosts

Over a hundred ancient settlements found beyond Hadrian’s wall in northern UK
NASA: we’ll find alien life in 10-20 years
These researchers counted the trees in China using lasers
NASA’s conference on arsenic eating microbe that could rewrite biology books

Next for Blagojevic and colleagues is to refine their design. The goal is to make BILI smaller, more rugged, and more sensitive to a broad range of organic particles.

Tags: alien lifelidar

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

default
Inventions

From Farms to Lost Cities, Drones Are Quietly Revolutionizing Modern Science

byMihai Andrei
2 months ago
Alien life

Have scientists really found signs of alien life on K2-18b?

byMihai Andrei
3 months ago
Science

These researchers counted the trees in China using lasers

byMihai Andrei
4 months ago
Future

A Cartoonish Crash Test Raises Real Questions About Tesla’s Autopilot

byTudor Tarita
4 months ago

Recent news

Solid-State Batteries Charge in 3 Minutes, Offer Nearly Double the Range, and Never Catch Fire. So Why Aren’t They In Your Phones and Cars Yet?

July 30, 2025

What if the Secret to Sustainable Cities Was Buried in Roman Cement?

July 30, 2025
colorful glitter and microplastics inside a car

We Might Be Ingesting Thousands of Lung-Penetrating Microplastics Daily in Our Homes and Cars — 100x More Than Previously Estimated

July 30, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.