ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Why lithium-ion batteries have become dirt cheap: R&D

We have research and development to thank for affordable batteries.

Tibi PuiubyTibi Puiu
November 22, 2021 - Updated on November 23, 2021
in Future, News, Tech
A A
Share on FacebookShare on TwitterSubmit to Reddit
Credit: MIT.

Lithium-ion is the most prolific battery technology currently in use due to its high energy density and low cost. Their importance cannot be understated. Beyond powering mobile devices and electric cars, Li-ion batteries are our best bet towards transitioning to a 100% renewable future, an essential goal if we’re to stave off the climate crisis.

Until not too long ago, the widescale adoption of Li-ion batteries has been delayed due to economic reasons. But that is no longer true. Earlier this year, researchers at MIT examined market data and found that the price for Li-ion batteries has declined by a staggering 97% since they were first introduced in 1991, right on par with cost reductions in solar panels tech.

Now, in a new study that appeared today in the journal Energy & Environmental Science, the MIT researchers broke down what exactly contributed to this exceptional cost reduction.

“That study showed how lithium-ion batteries improved. We also wanted to elucidate why lithium-ion batteries improved, which is what this study investigates. We sought to better characterize the mechanisms that enabled the rapid improvement of lithium-ion batteries. Understanding these mechanisms can help improve decisions made by researchers, business leaders, and policymakers when they design strategies to further improve the performance and reduce the costs of important clean energy technologies,” Micah Ziegler, first author of the new study and a postdoc at MIT, told ZME Science.

Perhaps surprisingly, it’s not economy of scale that made batteries affordable but rather advances following research and development — by far. Research and development, particularly in chemistry and material science, accounted for more than 50% of the cost decline, with factors of economy of scale (manufacturing, supply chain, etc) coming in second.

“Our results suggest that sustaining R&D investments over longer periods of time may be particularly essential for improving electrochemical storage technologies, for which a diversity of material choices could afford improvement,” Ziegler said.

Ziegler and Jessika Trancik, a professor at MIT’s Institute for Data, Systems, and Society, arrived at these results after applying a sophisticated methodology that was previously employed to plot the cost reduction in time for silicon solar panels, but also the rising costs of nuclear energy. This model can help disentangle the intricate web of dependencies and shine a light on what’s truly important.

The challenge lay in collecting reliable data that could be fed into this fundamental model.

“To disentangle and quantify the many factors that contributed to the improvement of lithium-ion batteries, we collected data from a wide variety of sources, including peer-reviewed journal articles, industry and government reports, product specification sheets, and press releases,” said Ziegler.

And although Li-ion batteries have become relatively cheap, there is still a lot of room for even further cost reductions. By one estimate, prices could drop to $70 per kilowatt-hour by 2050 – about half of today’s market prices.

RelatedPosts

New cathode might triple energy storage of lithium-ion batteries
‘Green’ batteries made from a red dye plant as an alternative to toxic batteries
New lithium-ion battery cathode can withstand 25,000 cycles. Your laptop battery only has 300
New Aluminum-ion battery fully charges in under a minute – 100 times faster than your laptop

Understanding what particular factors drive technological improvements and cost reductions can be critical if we’re to maintain the same pace of development. In this case, there is now data-backed evidence that doubling down on R&D is still worth it, seeing how historically this yielded the most dividends — and this doesn’t necessarily apply solely to batteries.

“Lithium-ion batteries are not the only technology we can learn from. Understanding why some technologies have improved rapidly, and why others have not, can help us further improve efforts to bring down the costs of clean energy technologies,” Ziegler added.

Tags: lithium-ion battery

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Environment

This Surprising Trick Could Make Your Lithium-Ion Batteries Last 50% Longer

byTibi Puiu
9 months ago
News

World’s largest battery manufacturer bets big on sodium-ion batteries

byTibi Puiu
4 years ago
Chemistry

Scientist accidentally invents a rechargeable battery that could virtually last forever

byTibi Puiu
5 years ago
Chemistry

New sodium-ion battery performs on par with some lithium-ion batteries

byTibi Puiu
5 years ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.