ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

India’s lunar lander recorded first moonquake in decades

This could give researchers important clues to the inner workings of the Earth.

Mihai AndreibyMihai Andrei
September 11, 2023
in News, Space
A A
Edited and reviewed by Tibi Puiu
Share on FacebookShare on TwitterSubmit to Reddit

India’s Chandrayaan-3 mission made history when it became the first lander to reach the moon’s South Pole. Now, researchers are analyzing the data sent in by the rover and lander — and what they found is already very exciting.

Within this data, scientists found signs of what could be a lunar temblor. This would be the first ‘moonquake’ recorded in decades.

vikram lander
Chandrayaan-3 lunar rover on the surface of the moon on August 30, 2023. Image credit: ISRO.

A moonquake is the lunar equivalent of an earthquake. However, because the moon doesn’t have active plate tectonics, which means the quakes are much weaker and rarer. Basically, the Earth’s tectonic plates are brushing past each other each other, which creates friction and stress, which triggers earthquakes. Without this process, the moon’s temblors are caused by other processes that have less energy.

Some moonquakes are caused by meteorite impacts, for instance; others are caused by expansion and contraction of the frigid lunar crust. The first information about moonquakes came from seismometers placed on the moon during the Apollo missions. The instruments placed by the Apollo 12, 14, 15, and 16 missions provided the first moonquake information, but the seismometers were switched off in 1977.

Now, Chandrayaan-3 has discovered what appears to be the first recorded moonquake since 1977.

The mission “has recorded an event, appearing to be a natural one, on August 26, 2023,” The Indian Space Research Organisation (ISRO) explained. “The source of this event is under investigation,” the agency continued. The moonquake was detected with the seismometer aboard the lunar lander.

This is more than just a geological curiosity. Earthquakes (and consequently, moonquakes) are one of the main methods through which we can determine the internal structure of planets and satellites. A seismometer picks up vibrations coming from the subsurface. These vibrations are caused by seismic waves and seismic waves propagate differently through different environments. By looking at how they propagate, you can infer the properties of the layers through which the waves pass.

RelatedPosts

Stunning animation shows how Marsquakes look like
The coronavirus-induced anthropause is now visible in seismic vibrations
Alaskan volcano shows signs of eruption
Mars may have a lot of water in its crust. It’s just too deep to use

This is how we know, for instance, that the Earth has an inner core and an outer core — although we haven’t dug anywhere close to our planet’s core. Our understanding of the moon is much more limited, but we’re making progress.

More seismic data, like the one coming in now, is essential. In addition to gathering more data, researchers are also developing better ways to analyze the data. For instance, computer models and advanced processing tools have enabled scientists to build a clearer picture of the moon’s mysterious interior from the Apollo data.

A 2011 NASA study concluded that the moon’s core is likely made up of fluid iron, surrounding a denser iron ball — similar to Earth. This theory was further confirmed in 2023 with gravitational data.

But we’re still trying to unravel the puzzle of how the moon was formed. Most models suggest that the moon was formed when a Mars-sized body struck the Earth, creating a debris ring that eventually collected into a single natural satellite. But there are several variations and alternative theories, and there’s a lot left to explain. For instance, the interior of the moon appears to be non-magnetic, unlike the Earth. But rocks collected by moon missions seem to have formed in a magnetic environment, and it’s not clear how this came to be.

It’s this type of question that missions like Chandrayaan-3 hope to answer. For now, both the missions’ rover and the lander are in sleep mode. As they are solar-powered, they will stay inactive for 14 days, during the lunar “night”. Then, when the sun starts to hit the moon’s south pole again, the missions will hopefully resume.

In addition to the Earth and Moon, researchers have also detected quakes on Mars. Researchers also believe they’ve discovered clues of quakes on Venus and Mercury, but no lander has directly detected them yet.

Tags: moonquakeseismicvikram lander

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Geology

Mars may have a lot of water in its crust. It’s just too deep to use

byMihai Andreiand1 others
10 months ago
Geology

The coronavirus-induced anthropause is now visible in seismic vibrations

byMihai Andrei
5 years ago
Geology

NASA presents first insights from Martian earthquakes

byMihai Andrei
5 years ago
Geology

Stunning animation shows how Marsquakes look like

byMihai Andrei
6 years ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.