ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

How CCTV Cameras and AI Can Prevent Floods in Cities

Researchers have developed an AI system using CCTV cameras to monitor culverts, potentially reducing urban flooding by detecting blockages in real-time.

Mihai AndreibyMihai Andrei
November 19, 2024
in News, Technology
A A
Edited and reviewed by Zoe Gordon
Share on FacebookShare on TwitterSubmit to Reddit

Culverts are essential yet often overlooked structures in our cities. These tunnels or pipes allow water to flow under roads, railways, or other infrastructure, playing a crucial role in water management. The UK alone is estimated to have over a million culverts. However, when these culverts become blocked by debris or trash, they can cause flooding. Monitoring them is a significant challenge, but new research suggests that AI, trained on CCTV data, could revolutionize this process.

CCTV image using AI to detect debris blocking a culvert
The ‘AI on The River’ software is trained to accurately detect debris blocking culvert trash screens. Credit: Journal of Flood Risk Management (2024). DOI: 10.1111/jfr3.13038

Water management has been a core challenge for cities since ancient times. Effective sewage systems were among the key innovations that enabled urban expansion. However, in modern times, urban areas face an increasing risk of flooding, especially as climate change intensifies storms and rainfall. Many cities are experiencing more frequent floods, leading to costly damage.

While this new research may not completely solve urban flooding, it addresses a specific issue: detecting culvert blockages.

Culvert entrances typically feature screens (usually a set of bars) that are meant to stop debris from passing through. Ironically, however, these screens often become clogged themselves. And if they do get clogged, they become a significant flood risk. Municipalities deal with this issue in two ways. Either they have teams regularly clean up these entrances or they clean them up when they receive a flood warning.

Both of these approaches have downsides. Having teams regularly clean culverts is safe but wastes a lot of resources when there’s no blockage, while reactive cleaning could be too late or even dangerous for the cleaning crew.

Rory Smith and colleagues from the University of Bath believe there’s a better way of doing things.

AI, meet culverts

They developed a method that uses CCTV cameras to monitor trash screens continuously. Using CCTV cameras and image-based classification, this system can determine whether a culvert is blocked or unblocked, allowing for quicker, more efficient responses and reducing the risk of urban flooding.

RelatedPosts

Global warming might lock California in drought for centuries
Stop patting yourself on the back for the Paris Agreement, researchers say
Cutting down CO2 emission might save the economy $71 trillion by 2050
Temperatures in the UK could exceed 40°C by the end of the century

The study focused on the Tongwynlais screen in Cardiff, where a CCTV camera takes regular images each morning, and additional images when water levels rise. Initially, they started with 755 images and after quality control, reduced the dataset to 577 images. Around 80% of these images showed blocked screens while 20% showed unblocked screens.

Image of a culvert prone to blockage.
Depiction of a culvert prone to blockage (not from the study). Image via Wiki Commons.

Researchers explored three approaches for the data because with far more blocked images than unblocked ones, the model could become biased, leading to incorrect predictions. The approaches were:

  1. Using the original, imbalanced dataset — This model trained on all the images as they were.
  2. Undersampling — The number of blocked images was reduced to match the number of unblocked images, creating a more balanced dataset.
  3. Data augmentation — The number of unblocked images was artificially increased by adding noise to the images, thus expanding the dataset without requiring more real-world examples.

Of the three approaches, data augmentation performed the best, boosting the model’s accuracy by 8% and achieving an overall accuracy of 88%. This improvement highlights the potential of data augmentation as a solution for dealing with imbalanced datasets, a common issue in machine learning.

This approach can be scaled

While the study focused on a single trash screen in Cardiff, the implications are much broader. In the future, similar systems could be installed across entire cities, creating a real-time network for flood monitoring. However, several challenges need to be addressed before this vision can become a reality.

Each culvert is different, and the conditions affecting trash screens can vary widely. One solution could be to develop a database of pre-trained models for different types of culverts, allowing new installations to benefit from transfer learning — a process that adapts an existing model to a new location.

In the future, systems like these could form the backbone of an early warning network for urban flooding, providing real-time data to
authorities and helping them respond before disaster strikes. With continued research and development, this technology could revolutionize how we manage urban water infrastructure in the face of a changing climate.

Journal Reference: Rory Cornelius Smith et al, CCTV image‐based classification of blocked trash screens, Journal of Flood Risk Management (2024). DOI: 10.1111/jfr3.13038

Tags: AICCTV monitoringclimate changeculvertsInfrastructuremachine learningtrash screensUniversity of Bathurban floodingwater management

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

News

Big Tech Said It Was Impossible to Create an AI Based on Ethically Sourced Data. These Researchers Proved Them Wrong

byMihai Andrei
16 hours ago
Future

Everyone Thought ChatGPT Used 10 Times More Energy Than Google. Turns Out That’s Not True

byTibi Puiu
2 days ago
Future

This AI Can Zoom Into a Photo 256 Times And The Results Look Insane

byTibi Puiu
1 week ago
Champiñón Hongos Naturaleza Setas Reino Fungi
Animal facts

What do Fungi, Chameleons, and Humans All Have in Common? We’re all Heterotrophs

byShiella Olimpos
1 week ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.