ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Scientists discover new type of fusion reaction — merging quarks is eight times more powerful than single reactions in H-bomb

Scientists were afraid this could lead to a planetary-bomb but, luckily, there's nothing to worry about.

Tibi PuiubyTibi Puiu
November 6, 2017
in News, Physics
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Scientists Have Turned to Mayonnaise to Solve One of Nuclear Fusion’s Biggest Problems
Mayo experiment helps physicists solve nuclear fusion instability
LHC signals hint at flaws in the Standard Model of Physics
Physicists Observe Entangled Top Quarks for the First Time

Israeli and American physicists have come across a new type of fusion reaction that is startlingly powerful. Initially, the scientists were a bit scared and thought it’s better not to publish the research least it fell into the wrong hands, leading to a planetary-bomb. The fusion, however, can’t sustain a chain reaction so scientists say the process is, for all practical reasons, harmless.

Credit: ThePressProject.
Credit: ThePressProject.

Matter, the stuff we see and interact with, is made of atoms,. In turn, these are made of protons and neutrons, which, in their own turn, are made of elementary particles called quarks and leptons. There are six ‘flavors’ or types of quarks physicists know of: up, down, strange, charm, top, and bottom. Yes, physicists have a knack for giving silly names to particles and phenomena. Up and down quarks have the lowest masses of all quarks.

Researchers at Tel Aviv University and the University of Chicago found a way to fuse two bottom quarks together. When they fuse, the two bottom quarks form a larger particle called a nucleon and release up to eight times more energy as the individual reactions in a Hydrogen-bomb, specifically 138 megaelectronvolts (MeV).

Quarks
Credit: Wikimedia Commons.

In the case of a hydrogen bomb, there are millions of fusion events going on, so imagine what a quark-bomb would look like. You don’t need to run the math to realize it could even obliterate a planet.

Marek Karliner of Tel Aviv University and colleagues almost wanted to pull the plug on the research until they realized it is all a ‘one-trick pony’. What Karliner means by that is bottom quarks exist for just one picosecond or a mere one-trillionth of a second before turning into up quarks. That’s a way too brief period for a chain reaction to sustain itself so a quark-bomb would just fizzle instantly.

“We suggest some experimental setups in which the highly exothermic nature of the fusion of two heavy-quark baryons might manifest itself. At present, however, the very short lifetimes of the heavy bottom and charm quarks preclude any practical applications of such reactions,” the authors wrote in the study published in the journal Nature.

In and of itself, the research is highly valuable because it proves that subatomic particles can release massive amounts of energy when fusing together.

“It is important to emphasize that although our findings have aroused considerable interest in theory, they have no practical application,” said Karliner. “A nuclear fusion that occurs in a reactor or a hydrogen bomb is a chain reaction in a mass of particles, creating a huge amount of energy. This is not possible by melting heavy quarks, simply because the raw material cannot be accumulated in the melting process. If we thought for a moment that our discovery had some dangerous application, we would not publish it.”

Tags: nuclear fusionquarkquark fusion

Share69TweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

Physicists Observe Entangled Top Quarks for the First Time

byTibi Puiu
11 months ago
News

Scientists Have Turned to Mayonnaise to Solve One of Nuclear Fusion’s Biggest Problems

byTibi Puiu
1 year ago
Offbeat

Anime waifus are helping to build a nuclear fusion reactor

byMihai Andrei
1 year ago
Environment

Scientists achieve milestone on path towards nuclear fusion energy

byFermin Koop
4 years ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.