ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Europeans picked up a customized immune system by having sex with Neanderthals

"Is that a more pronounced inflammatory response or are you just happy to see me?"

Alexandru MicubyAlexandru Micu
October 26, 2016
in Genetics, Health, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Researchers have discovered that people of European and African descent have very different immune responses to infections. They believe these traits could be the result of modern humans breeding with Neanderthals after leaving Africa.

Image credits Paul Hudson / Flickr.

Sometime between one hundred to a few tens of thousands of years ago, as modern humans migrated out of Africa, they met strange peoples which weren’t completely like them, but not too different either — the Neanderthals. So, naturally, they had sex with them.

The genes we acquired in that exchange may be responsible for a whole range of diseases, but it’s possible they gave our ancestors the means to better adapt to their new environment. Scientists studying the immune system of humans today have found that people of European descent have significantly different immune responses from their African counterparts — a direct consequence of the exchange, they believe.

The finding could explain why Africans generally have more robust immune systems than Europeans, but also why they’re more predisposed to certain autoimmune conditions.

“I was expecting to see ancestry-associated differences in immune response but not such a clear trend towards an overall stronger response to infection among individuals of African descent,” says University of Montreal geneticist and paper co-author Luis Barreiro.

Barreiro’s team examined samples taken from 175 American patients, roughly half and half of African and European ancestry. They extracted macrophages from their blood — white cells that kill pathogens by “eating” them — and infected the cells with Listeria and Salmonella. They let them go about their business for 24 hours, then analyzed them.

The cells retrieved from the African group had reduced the bacterial growth three times faster than the European group thanks to a stronger inflammatory response. That’s a definite plus when combating infections, but the team points out it’s a double edged sword.

“The immune system of African Americans responds differently, but we cannot conclude that it is better,” Barreiro said, “since a stronger immune response also has negative effects, including greater susceptibility to autoimmune inflammatory diseases such as Crohn’s disease.”

The team also examined the genetic makeup of the cells’ active genes, and found a link between the European sample and Neanderthal DNA — but didn’t find any similar link in the African sample.

RelatedPosts

New studies describe a link between influenza and parotitis
Blood from world’s oldest woman tells us why life reaches its limits
How “vaccinating” plants can help crops fight pests without chemicals
15,000-year-old viruses found in Tibetan glacier ice — and we know nothing about them

The team says that when early humans migrated into Europe around 100,000 years ago, they encountered a continent already colonized by the Neanderthal. Finding traces of their DNA in modern European subjects suggests that the two species actively bred with each other. It makes sense, too. The new genes would have offered our ancestors an evolutionary edge in Europe, where environmental conditions were very different from those in Africa. A lower inflammatory response would also make more sense in the colder climate compared to Africa’s sweltering heat, which promotes infections.

“Our results suggest that the immune systems of African- and European-descended individuals have evolved to better respond to the specific needs imposed by their specific environments,” Barreiro told Live Science.

“What is advantageous in one context is likely to be detrimental in another.”

Too much of a good thing

A separate study also found a lower inflammatory tendency in monocytes against bacterial and viral threats in people of European descent compared to those from Africa. The study included 200 participants from France. The team, led by Lluis Quintana-Murci from the Institut Pasteur, also tied the differences to Neanderthal-like genes in the European participants. In broad lines, the results are the same. The French team also suggests that a powerful inflammatory response could actually be dangerous in Europe, so this effect could have provided an inherent evolutionary benefit — weeding out the more inflammatory-prone genes over time.

“Reducing immune inflammatory responses is a way to avoid autoimmunity, inflammatory, and allergic reactions,” Quintana-Murci told ResearchGate.

“Finding that reduced immune responses has conferred an advantage highlights the tradeoff between recognising pathogens while avoiding exacerbated, aberrant reactions that can be also harmful for the host.”

Both studies say more work needs to be done before we understand where these differences stem from. But it could help us develop things like personalized treatments or medications tailored for certain ethnicities’ needs.

“There is still much to do,” says Barreiro. “[Genetics] explains only about 30 percent of the observed differences in immune responses. Our future studies should focus on other factors, emphasising the influence of the environment and our behaviour.”

Barreiro’s and Quintana-Murci’s studies are published in the journal Cell.

Tags: immunityinfectionsInflammationPathogenswhite cells

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Future

Scientists Create a ‘Smart Sponge’ That Knows When to Heal and When to Fight Inflammation

byMihai Andrei
4 weeks ago
Biology

AI Could Help You Build a Virus. OpenAI Knows It — and It’s Worried

byMihai Andrei
2 months ago
Environment

How “vaccinating” plants can help crops fight pests without chemicals

byTibi Puiu
10 months ago
Agriculture

75 people were hospitalized after eating lettuce — and it’s linked to climate change

byMihai Andrei
11 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.