Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → News

How cobras developed their devastating flesh-eating venom

The cobra developed a crippling venom -- and it wanted the world to know.

Mihai Andrei by Mihai Andrei
March 16, 2017
in Biology, News

Cobras are some of the most dangerous snakes in the world, causing crippling losses in Africa and Asia. Even for survivors, amputation is often necessary due to the snake’s flesh-eating venom. But why, and how did they evolve this venom?

The cobra’s dramatic hood and its coloring is a defensive signal that indicates the extreme potency of its venom. Image credits: N. Panagides et al., 2017/Toxins

Associate Professor Bryan Fry of UQ’s School of Biological Sciences wanted to get to the bottom of this extremely dangerous mystery, so they analyzed 29 cobra species and related snakes, finding that the flesh-destroying venom evolved side by side the distinctive broad hoods that make the cobras extra terrifying.

“While we knew the results of their venom, how the cobra’s unique defensive venom evolved remained a mystery until now,” he said. “Our study discovered the evolutionary factors shaping not only cobra venom, but also the ornate markings on their hoods, and the extremely bright warning colourings present in some species.”

Overall, there are over 270 cobra species spread throughout Africa and Asia, and they exact a terrible toll on both human and animal victims. Their venom — which by the way isn’t only delivered by biting, but also by spitting — causes extreme pain, blindness, respiratory failure, possible amputation of limbs, and can very easily kill you. Scientists are very well aware of the flesh eating properties, but did it evolve as an offensive or as a defensive mechanism?

Fry found that as the cobras developed this type of venom, their hoods started to change — warning off potential predators with hood markings, body banding, red colouring and spitting. So they developed an extra-dangerous venom, and they did their best to make sure everyone knows. The more ornate the cobra, the more dangerous the venom.

“Their spectacular hoods and eye-catching patterns evolved to warn off potential predators because unlike other snakes, which use their venom purely for predation, cobras also use it in defence,” he said. “For the longest time it was thought that only spitting cobras had these defensive toxins in high amounts in their venoms, however we’ve shown that they are widespread in cobras. These results show the fundamental importance of studying basic evolution and how it relates to human health.”

Associate Professor Bryan Fry in the Sindh desert of Pakistan with a cobra.
Credit: Courtesy Associate Professor Fry

So the potency of the venom developed as a defensive mechanism, but even more interestingly, it developed twice, independently. The first time, in “true” cobras, and then secondly, in king cobras — despite the world ‘cobra’ in their name and despite being the largest venomous snake in the world, king cobras are not real cobras, but they evolved the same mechanism, both for the venom and for the hood.

Now, the next step for researchers is to perform tests on antivenom, to better understand how it can be improved. Because most snakebites occur in developing parts of the world, producers have been reluctant to enter the market, or have left it altogether. Antivenom production in general is underdeveloped.

“Globally, snakebite is the most neglected of all tropical diseases and antivenom manufacturers are leaving the market in favour of products that are cheaper to produce and have a bigger market,” he said. “Antivenom is expensive to make, has a short shelf life and a small market located in developing countries. Therefore, we need to do further research to see how well those remaining antivenoms neutralise not only the toxins that kill a person, but also those that would cause a severe injury.”

Also encouraging is the fact that this type of antivenom could be used in treating some cancers. Because the venom only attacks some tissues and leaves others unharmed, it might be “trained” to only attack cancerous cells. In the end, the devastating venom of the cobra could hold a much-needed cure.

“Any kind of compound that selectively kills cells could be a good thing,” Dr Fry said. “These chemicals may lead to new cancer treatments if we can find ones that are more potent to cancer cells than normal healthy cells. Cobras are a rich resource of novel compounds in this way so there may ultimately be a silver lining to this very dark cloud.”

Journal ref: Nadya Panagides et al. How the Cobra Got Its Flesh-Eating Venom: Cytotoxicity as a Defensive Innovation and Its Co-Evolution with Hooding, Aposematic Marking, and Spitting, Toxins (2017). DOI: 10.3390/toxins9030103

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Carnivorous plants all over the world used convergent evolution to start eating flesh
  2. Researchers find Jurassic piranha-like flesh-eating fish, and also spot their victims
  3. Venom-producing snake organs developed in the lab
  4. Ground-breaking ‘Ultra-bright Atom Laser’ Developed in Crete – 7 times stronger than any developed to date
  5. Fanged blenny ‘heroin’-like venom could be the next super-painkiller
Tags: cobravenom

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW