ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Bright galaxies help solve mystery about early universe

They were much brighter than they were supposed to be.

Mihai AndreibyMihai Andrei
May 9, 2019
in Astronomy, Astrophysics, News
A A
Share on FacebookShare on TwitterSubmit to Reddit
This deep-field view of the sky (center) taken by NASA’s Hubble and Spitzer space telescopes is dominated by galaxies – including some very faint, very distant ones – circled in red. The bottom right inset shows the light collected from one of those galaxies during a long-duration observation. Image credits: NASA/JPL-Caltech/ESA/Spitzer/P. Oesch/S. De Barros/I.Labbe

For all its mind-bending features, the universe is a pretty ordered place. Stars and planets are neatly arranged into solar systems; solar systems have vast swaths of space between them and are themselves arranged into galaxies. Space is also transparent and decently lit by stars, which is nice because it allows us to see at large distances, and, because of how light works, also allows us to see in the past.

But it wasn’t always like this. In its earlier days, the universe was much more tumultuous. For the first 377,000 years, it was a soup of various types of matter and antimatter, finally becoming cool enough for individual atoms to form — but it was still dark and murky. Even some 1 billion years after the Big Bang, when the universe had become transparent, there weren’t too many sources of light because it takes such a long time for mass to collapse into stars and galaxies, though light had been sparked nonetheless.

Here’s the thing, though: while Dark Ages of the universe started around 377,000 years after the Big Bang, there was still some radiation. Something started exciting the hydrogen with radiation, ionizing it and producing light. Astronomers are not really sure how this happened, though.

No one really knows when the first stars in the universe came to be. There is evidence suggesting that they formed some 100-200 million years after the Big Bang — but did they have enough energy to produce this ionization phenomenon? That’s hard to say.

Now, a new study finally sheds some light on this issue.

“It’s one of the biggest open questions in observational cosmology,” said astronomer Stephane De Barros of the University of Geneva. “We know it happened, but what caused it? These new findings could be a big clue.”

In an attempt to answer this question, De Barros and colleagues directed the Spitzer telescope at two separate regions of the night sky. The telescope detected 135 galaxies that formed just 730 million years after the Big Bang, and they were very different from the galaxies we’re used to seeing.

For starters, they were very bright in two specific wavelengths of infrared light produced by ionizing radiation interacting with hydrogen and oxygen gases within the galaxies. This suggests that the galaxies were dominated by hydrogen and helium, containing very small amounts of  “heavy” elements (like nitrogen, carbon and oxygen) compared to stars found in average modern galaxies. But the most surprising (and important) finding was that they were so bright — much brighter than researchers anticipated.

RelatedPosts

Chinese astronauts grow rice and cress in space, on the Tiangong 1 station
First artwork to be made in space is now orbiting above all our heads
Astronomers have pegged the farthest galaxy ever discovered
Saturn’s rings are raining down — in about 100 million years, they’ll be gone

This suggests that average galaxies at the time were much brighter than average galaxies are now.

It’s the first study to document the brightness of galaxies from this period. Although these galaxies were not the first generation, they are still a very old group which could shed new light on this reionization era, a key process of the evolution of the universe.

The fact that these observations could even be made with Spitzer was surprising, researchers say.

“We did not expect that Spitzer, with a mirror no larger than a Hula-Hoop, would be capable of seeing galaxies so close to the dawn of time,” said Michael Werner, Spitzer’s project scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California. “But nature is full of surprises, and the unexpected brightness of these early galaxies, together with Spitzer’s superb performance, puts them within range of our small but powerful observatory.”

“These results by Spitzer are certainly another step in solving the mystery of cosmic reionization,” said Pascal Oesch, an assistant professor at the University of Geneva and a co-author on the study. He also adds that the James Webb telescope, which is set to launch in 2021, will study these stars with a mirror 7.5 largers than Spitzer’s. “We now know that the physical conditions in these early galaxies were very different than in typical galaxies today. It will be the job of the James Webb Space Telescope to work out the detailed reasons why.”

The study has been published in the Monthly Notices of the Royal Astronomical Society.

Tags: big banggalaxySpace

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

News

Physicists Make First Qubit out of Antimatter and It Could One Day Explain Why the Universe Exists At All

byTibi Puiu
3 weeks ago
Concept image of an icy moon.
News

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter’s Icy Moon Europa

byRupendra Brahambhatt
2 months ago
News

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

byTibi Puiu
2 months ago
black hole
News

Astronomers Claim the Big Bang May Have Taken Place Inside a Black Hole

byJordan Strickler
2 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.