ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

The reason why we haven’t found alien life yet might be because we’re searching too soon

We might be too early for the party. Darn!

Tibi PuiubyTibi Puiu
August 3, 2016
in Alien life, News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit
An artist’s impression of a planet with two exomoons orbiting in the habitable zone of a red dwarf. Credit: NASA // Wikimedia Commons

In our very own galaxy, there are up to 400 billion stars and around 100 billion planets, out of which an estimated 40 billion Earth-like exoplanets should be orbiting sun-like stars or red dwarfs in a habitable zone. Faced with this sort of numbers for only for one galaxy — our own — many scholars naturally assert that Earth ought not to be the sole life-bearing planet out there. Yet, for better or worse, our giant radio telescopes haven’t picked up any artificial alien signals. Faced with such uncertainties, scientists nowadays are going wild with all sorts of educated assumptions and hypotheses in an effort to unravel this existential dilemma.

A head start

While previous research seems to indicate the chances of Earth being the only place in the galaxy capable of fostering life are slim, one team of astronomers and physicists led by Harvard University’s Avi Loeb are exploring an alternate route. Their research concludes that planets orbiting dim stars called red dwarfs are the best place to look for extraterrestrial life. The catch: life shouldn’t spring in these sort of places for another 10 trillion years. For comparison, the universe is thought to be 13.7 billion years old. That’s a lot of waiting time. It follows, that maybe — just maybe — life on Earth is singular, or among the very first.

Red dwarfs are by far the most common stars in the universe, comprising about three-fourths of all stars based on space telescope observations made so far. Red dwarf stars typically have a mass of between 7.5% and 40% of the Sun, and this lower mass means that red dwarfs have a cooler surface temperature than the Sun, typically around 3,500 Kelvin (3,230 degrees Celsius) compared to over 5,750 Kelvin (5,475 degrees Celsius) for the Sun.

Artist's conception of a red dwarf, the most common type of star in the Sun's stellar neighborhood, and in the universe. Although termed a red dwarf, the surface temperature of this star would give it an orange hue when viewed from close proximity. Credit: Wikimedia Commons
Artist’s conception of a red dwarf, the most common type of star in the Sun’s stellar neighborhood, and in the universe. Although termed a red dwarf, the surface temperature of this star would give it an orange hue when viewed from close proximity. Credit: Wikimedia Commons

A potentially habitable planet — meaning it revolves around a stable orbit and can sustain liquid water and an atmosphere — from a red dwarf system thus has to be a lot closer to the energy source (the red dwarf) than an Earth-like planet around a sun-like star. However, red dwarfs can last for up to 1,000 times longer than sun-like stars because they need far less fuel to sustain the nuclear fusion.

Loeb and colleagues calculated the relative formation probability per unit time of habitable Earth-like planets starting from the first stars and continuing to the distant cosmic future. One core assumption was that habitable planets need to sustain “life as we know it” — carbon-based, water-dependent and within a certain temperature range. Then, assuming life is indeed possible to form around red dwarfs, the researchers found that extraterrestrial life is 1,000 times more likely to arise in the distant future than it is today. A very distant future, as outlined earlier.

“That’s surprising,” says Loeb. “It means that life around the sun is probably a bit early.”
“If it turns out that low-mass stars are able to support life, then we are special because we are one of the early forms of life,” Loeb says.

Whether red dwarfs can host any life whatsoever is still a matter of debate. Because these stars are so dim, potentially habitable planets need to orbit very closely around their red dwarf parents, which might subject them to radiation and solar flares.

The upcoming Transiting Exoplanet Survey Satellite and James Webb Space Telescope could help settle this debate once they become operational and use their spectroscopic instruments to peer into the chemical makeup of plants orbiting red dwarfs. It might take anything from a decade to a couple of decades before this happens, though. Until then, Loeb’s hypothesis is both entertaining and somewhat depressing. No one likes to be the first comer to a party.

RelatedPosts

NASA: we’ll find alien life in 10-20 years
Black hole ripping apart a red dwarf that’s orbiting at records speeds
Spectacular new images show Martian ancient river systems
Astronomers confirm the existence of potentially habitable super-Earth
Tags: alien lifered dwarf

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Alien life

Have scientists really found signs of alien life on K2-18b?

byMihai Andrei
2 months ago
Artist's impression of an evolving white dwarf (foreground) and millisecond pulsar (background) binary system. Using the 4.1-meter SOAR Telescope on Cerro Pachón in Chile, part of Cerro Tololo Inter-American Observatory, a Program of NSF's NOIRLab, astronomers have discovered the first example of a binary system consisting of an evolving white dwarf orbiting a millisecond pulsar, in which the millisecond pulsar is in the final phase of the spin-up process. The source, originally detected by the Fermi Space Telescope, is a “missing link” in the evolution of such binary systems.
News

Astronomers Just Found Stars That Mimic Pulsars — And This May Explain Mysterious Radio Pulses in Space

byJordan Strickler
6 months ago
News

Astronomers discover intriguing exoplanet with possible water vapor atmosphere

byJordan Strickler
2 years ago
Exoplanets & Alien Life

What is the Drake Equation: the math that predicts how many alien civilizations are out there

byTibi Puiu
3 years ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.