ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Newly-discovered fossil lizard shows how uncertainty can lead to better science

Sometimes, it's best to admit that we simply don't know the right answer (yet).

Alexandru MicubyAlexandru Micu
November 3, 2020
in Biology, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

A skull unearthed in 1971 and stored at Yale’s Peabody Museum of Natural History has finally been studied and described — uncovering a new species.

Lizard skull fossil is new and 'perplexing' extinct species
Left lateral view of the Kopidosaurus perplexus skull. Image credits Simon Scarpetta.

Lizard fossils aren’t particularly plentiful, as their bones tend to break apart rather easily. Most of the fossils we do have of them, therefore, come as isolated fragments, not complete specimens. That’s what makes the discovery of the present fossil, a beautifully-preserved skull about one inch long with a mouth full of sharp teeth, all the more exciting. Based on the skull, University of Texas at Austin graduate student Simon Scarpetta described a new fossil species.

New lizard on the block

“Anytime you find a skull, especially when you’re trying to figure out how things are related to each other, it’s always an exciting find,” Scarpetta says.

Scarpetta found the skull back in 2007 and brought it back to the Jackson School of Geosciences at The University of Texas for study. It turned out to be a completely new species, which he christened Kopidosaurus perplexus. The first half of its name is a reference to the lizard’s teeth and their distinct curvature — a kopis was a type of curved sword used in ancient Greece. The second part is a nod to how “perplexing” it’s been to determine where the lizard fits on the tree of life, according to Scarpetta. It simply fits in several spots equally well.

K. perplexus could belong to one of two families of lizards, but we don’t have enough information to tell which is the right one. Adding to the uncertainty is that the relationship between these groups is different between the different evolutionary trees we currently have at our disposal. Scarpetta looked at three of them, each constructed by different researchers studying reptile lineages based on DNA data, and found several places into which the ancient lizard could fit snugly.

As such, the species raises an important point for paleontology: just because a species fits on one branch of the tree of life doesn’t mean that it’s supposed to be there, or that it doesn’t fit on another one.

“The hypothesis that you have about how different lizards are related to each other is going to influence what you think this one is,” Scarpetta said.

For fossils, where DNA information isn’t available, paleontologists rely on the animal’s morphology (anatomical structure) to determine how it relates to other long-dead species. In essence, because animals evolve from one another, related species will share structural elements — like how cars of a particular brand share particular design elements, for example. The more such similarities between two specimens, the more likely it is that they’re related.

Lizard skull fossil is new and 'perplexing' extinct species
A computer tomography image of the skull in left lateral view. Image credits Simon Scarpetta.

Scarpetta created a digital scan of the skull in order to better study it. He found certain details that helped him determine this was a new species altogether, but some elements overlapped with features from several other lizard lineages. All of those lineages, he explains, belong to the Iguana group, which includes today’s chameleons, anoles, and iguanas. He later compared the skull to several Iguana evolutionary trees — on each, the animal fit equally well in two general spots, he explains.

RelatedPosts

Fossil Friday: leg fragment points to huge, toothy bird with a wingspan of up to 21 feet
Fossil Friday: ancient squid caught in stone while munching on a fish
The world’s first gene-engineered reptiles are all albinos
Newly discovered dinosaur had bat-like wings… but could it fly?

It’s far from the only species that could easily fit into multiple places on the tree of life, he adds. But the study goes a long way towards showcasing how complicated this process can be, and why accepting a degree of uncertainty in our findings can help lead to better, more accurate science in the long run.

The paper “Effects of phylogenetic uncertainty on fossil identification illustrated by a new and enigmatic Eocene iguanian” has been published in the journal Scientific Reports.

Tags: fossillizardpaleontology

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

News

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

byTibi Puiu
2 months ago
Biology

Paleontologists Discover “Goblin-Like” Predator Hidden in Fossil Collection

byTudor Tarita
2 months ago
a denisovan skull
Anthropology

The Face of a Ghost: 146,000-Year-Old Skull Finally Reveals What Denisovans Looked Like

byMihai Andrei
2 months ago
Geology

Identical Dinosaur Prints Found on Opposite Sides of the Atlantic Ocean 3,700 Miles Apart

byTibi Puiu
2 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.