ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

New molecular technique could reinvent plastic surgery — no cuts, scars or pain

In the future, plastic surgery might become non-invasive if you can believe it.

Tibi PuiubyTibi Puiu
April 5, 2019
in Health, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit
A new noninvasive process can alter the curve of a cornea from that seen in blue in a) to the new position seen in red in b) to fix vision problems. Credit: Rachel Qu, Anna Stokolosa, Charlotte Cullip.
A new technique developed by American researchers can alter the curve of a cornea from that seen in blue in a) to the new position seen in red in b) to fix vision problems. Credit: Rachel Qu, Anna Stokolosa, Charlotte Cullip.

Plastic surgery often aims to make people look more aesthetically pleasing, but the operation itself is anything but pretty. In order to reshape a nose or ear, doctors have to cut and suture the target tissue. The patient then has to go through a lengthy recovery and risks scarring. But in the future, plastic surgery might be a lot safer, faster, and convenient, thanks to a new ‘molecular surgery’ technique that involves running electricity through cartilage, instead of cutting it with a scalpel. A 3-D printed mold placed over the target tissue reshapes the tissue under the desired shape.

“We envision this new technique as a low-cost office procedure done under local anesthesia,” said Michael Hill, a researcher at Occidental College and lead author of the new study. “The whole process would take about five minutes.”

Hill and colleagues invented the new technique by accident while they were looking for a way to reshape cartilage without destroying it. They first experimented with lasers but the researchers found that the method is expensive and impractical since the material couldn’t become malleable without killing cells at the same time. Instead of lasers, the researchers tried electricity and were amazed by their results — the cartilage loosened, becoming malleable, without any heat involved.

The structure of cartilage resembles spaghetti, being comprised of tiny rigid fibers that are randomly woven together by biopolymers. Cartilage also contains negatively charged proteins and positively charged sodium ions. When electricity is passed through the cartilage, water inside the tissue is electrolyzed, breaking the water molecules into oxygen and hydrogen ions. Since the positive charge of the protons cancels out the negative charge of the proteins, the density of the material is reduced, making the cartilage more malleable.

“Once the tissue is floppy,” Hill said, “you can mold it to whatever shape you want.”

The method was tested on rabbit’s ears. These normally stand upright but a mold placed on one of the ears bent the cartilage while an electrical current was applied to the tissue. Without the electricity running through the cartilage, the ear would have sprung back into its original upright position. After the mold was removed and the current running through microneedle electrodes into the ear was turned off, the cartilage hardened into a new shape.

Achieving the same outcome with traditional methods would have involved surgery that cuts through the skin and cartilage. This leads to inaesthetic scar tissue forming at the site of the incision. Molecular surgery, on the other hand, causes no scarring or pain.

Instead of rabbit’s ear, the same procedure could be used to fix a person’s nose, restore function to stiff joints, correct vision by altering the shape of the cornea or repair a deviated septum. The researchers are exploring licensing options with medical device companies, but it might take many years before plastic surgery reinvents itself.

The findings were presented at the American Chemical Society (ACS) Spring 2019 National Meeting & Exposition.

RelatedPosts

Surgeons perform most extensive full face transplant, including jaws, teeth, tongue and facial muscles
The US alone spends $16 billion on plastic surgery — we’re dealing with 300,000 breast implants a year
Plastic surgery of the future will rely on gene therapy
Cosmetic eye surgery turns brown eyes into blue
Tags: plastic surgery

Share17TweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Image via Vimeo.
Health

The US alone spends $16 billion on plastic surgery — we’re dealing with 300,000 breast implants a year

byMihai Andrei
8 years ago
Brown eyes surgery for blue eyes
Health

Cosmetic eye surgery turns brown eyes into blue

byTibi Puiu
10 years ago
Reconstructive surgery (credit: U.S. Army/Nashaunda Tilghman/Wikimedia Commons)
Genetics

Plastic surgery of the future will rely on gene therapy

byTibi Puiu
12 years ago
Transplant recipient 37-year-old Richard Lee Norris of Hillsville, Virginia seen in three different stages of his live. Left: pre-accident; middle: before transplant; right: after. (c) University of Maryland Medical Center
Health

Surgeons perform most extensive full face transplant, including jaws, teeth, tongue and facial muscles

byTibi Puiu
13 years ago

Recent news

CERN Creates Gold from Lead and There’s No Magic, Just Physics

May 9, 2025

A New AI Tool Can Recreate Your Face Using Nothing But Your DNA

May 9, 2025

How Some Flowers Evolved the Grossest Stench — and Why Flies Love It

May 9, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.