ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

NASA releases beautiful new animation of a black hole

It's a space-time-bender!

Alexandru MicubyAlexandru Micu
September 26, 2019 - Updated on August 31, 2023
in Astrophysics, News, Physics, Science, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

A beautiful new animation produced by NASA helps visualize the relationship between gravity, time, and space.

Image credits NASA Goddard Space Flight Center / Jeremy Schnittman.

Researchers at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, have generated a new animation of a black hole and its surrounding matter disk. The animation is based on radio images of a black hole at the core of galaxy M87 taken by the Event Horizon Telescope.

Bendy time

“Simulations and movies like these really help us visualize what Einstein meant when he said that gravity warps the fabric of space and time,” says Jeremy Schnittman, Ph.D., the NASA astrophysicist who generated these gorgeous images using custom software

Schnittman’s work helps to showcase how the huge gravity around a black hole distorts the way we perceive its surroundings. That halo-like structure is, in fact, a disk. This accretion disk is a relatively thin mass of gas infalling into the black hole; we see it in the particular shape shown above because gravity is bending light around the black hole. It’s pretty similar to bending a picture of the disk.

Gas in accretion disks is very hot (through a combination of friction and compression), so it radiates in different parts of the electromagnetic spectrum. Those around the youngest of stars glow in infrared, but the disk in this animation glows with X-rays, because it has a lot of energy. It ripples and flows as magnetic fields move along its bulk. This creates brighter and dimmer bands in the disk.

The gas also moves faster the closer it gets to the black hole — close to the speed of light nearest to it. In the animation above, this makes the left side look brighter than the right side due to redshift.

The thin line of light that seemingly outlines the black hole is its “photon ring”. You’re actually looking at the underside of the disk, its image bent back to us by the massive gravitational pull there. What we see as the photon ring is made up of several layers that grow progressively thinner and dimmer — this is light that’s been bent several times around the black hole before escaping for our telescopes to capture. Schnittman’s model uses a spherical black hole, so here the photon ring looks identical from every angle.

“Until very recently, these visualizations were limited to our imagination and computer programs,” Schnittman says. “I never thought that it would be possible to see a real black hole.”

RelatedPosts

Smart ‘curtains’ open and close just by responding to light only
How to slow down light until it stops
Digital imaging of the future: artificial imaging and 3-D displays
Blackest material resembles a black hole. It’s so black you can’t even see it
Tags: blackgravityHolelight

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

News

This Unbelievable Take on the Double Slit Experiment Just Proved Einstein Wrong Again

byTibi Puiu
2 weeks ago
Mind & Brain

Your Brain Gives Off a Faint Light and It Might Say Something About It Works

byTibi Puiu
3 weeks ago
Inventions

Scientists Detect Light Traversing the Entire Human Head—Opening a Window to the Brain’s Deepest Regions

byTudor Tarita
2 months ago
Future

Why Perovskite LEDs Might Soon Replace Every Light in Your Home

byTibi Puiu
2 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.