ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Mars is also a wobbly planet like Earth, and we don’t know why

Maybe this discovery can help us understand them both.

Alexandru MicubyAlexandru Micu
January 7, 2021
in News, Science, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

Mars becomes the second planet after Earth that we know is wobbling around its axis. As to why — we’re yet unsure.

Digital rendering of Mars. Image via Pixabay.

As the Red Planet spins during its day, it also wobbles and bobbles gently around its own axis, a new paper reports. Astronomers have no idea why this is happening, but the fact that Mars is the second planet we know of to do this (after Earth) could help us understand it better.

The Chandler wobble

This type of motion — a planet’s wobble around its own axis as it spins — is known as the Chandler wobble. Earth shows some 30 feet (9 meters) of amplitude in this wobble: its poles move in a circle with a 9-meter diameter around its axis, with a period of around 430 days.

Mars seems to be doing the same, albeit the diameter it spins on is way smaller: 4 inches (10 centimeters) off-center, with a period of around 200 days, according to Eos.org, the news blog of the American Geophysical Union (AGU).

The Chandler wobble is produced when a rotating body’s mass isn’t distributed evenly. Things like differences in density throughout its body or in its shape will lead to such a wobble. In Earth’s case, it is caused by its shape, which isn’t perfectly round. Although Earth’s is much more pronounced than that of Mars, it’s possible that the source of the wobble is the same for both planets.

Still, here’s where the mystery begins. Over time, we know that this wobble should fade out. It’s been calculated that for Earth, any Chandler wobbling should disappear within a century of it starting. However, we know that this isn’t the case — Earth has been wobbling for much longer than that.

Given that our planet is both geologically and biologically active, our running assumption so far is that shifts in atmospheric and ocean pressures (i.e. the movement of large bodies of water and gas) are constantly fueling this wobble, which is why it didn’t die out when our calculations said it would.

RelatedPosts

NASA stunned as Curiosity Rover finds sulfur crystals on Mars — “It shouldn’t be there”
NASA trains to search for Martian life in world’s driest desert
Gravity data suggests Mars may be more “alive” than previously thought
This is the oldest known piece of our planet – a 4.4 billion-year-old gem

But Mars is neither geologically nor biologically active, as far as we know. It has no oceans and only a thin coating of an atmosphere. And yet it wobbles.

The movement was detected using 18 years’ worth of data collected by satellites around Mars: Mars Odyssey, Mars Reconnaissance Orbiter and, Mars Global Surveyor. Crunching the math leads to the same conclusion as it does on Earth: this wobble should end naturally, but so far, it hasn’t.

Our only guess so far is that, in Mars’ case, the Chandler wobble is fueled by atmospheric motions alone; this would fit with the much lower amplitude of motion compared to Earth’s own wobble. However, more data is needed before we can be certain.

However, we do know one thing for sure: if we’ve found two planets which wobble, we’re likely to see more in the future doing the same. Maybe we can understand what’s happening before we run into the third.

Tags: earthMarsplanetWobbly

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

News

First Complete Picture of Nighttime Clouds on Mars

bySarah Stanley
5 days ago
mars
News

Quakes on Mars Could Support Microbes Deep Beneath Its Surface

byJordan Strickler
2 weeks ago
Environment

Humans Built So Many Dams, We’ve Shifted the Planet’s Poles

byTudor Tarita
3 weeks ago
This is HOPS-315, a baby star where astronomers have observed evidence for the earliest stages of planet formation. The image was taken with the Atacama Large Millimeter/submillimeter Array (ALMA), in which ESO is a partner. Together with data from the James Webb Space Telescope (JWST), these observations show that hot minerals are beginning to solidify. In orange we see the distribution of carbon monoxide, blowing away from the star in a butterfly-shaped wind. In blue we see a narrow jet of silicon monoxide, also beaming away from the star. These gaseous winds and jets are common around baby stars like HOPS-315. Together the ALMA and JWST observations indicate that, in addition to these features, there is also a disc of gaseous silicon monoxide around the star that is condensing into solid silicates –– the first stages of planetary formation.
News

For the First Time Ever We Can See Planets Starting to Form Around a Star

byJordan Strickler
4 weeks ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.