Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science

Humans mutate more slowly than believed, and it could rewrite our evolutionary history

So.... no X-men, then? Sad.

Alexandru Micu by Alexandru Micu
January 23, 2019
in Science
Image via Colin Behrens.

Researchers from the Aarhus University, the Copenhagen Zoo (both in Denmark) and Universitat Pompeu Fabra, Barcelona, report that the mutation rate of humans has been slowing down over the past million years or so. Today, it’s much slower than that of our primate relatives. The finding is important as mutation rate is one of the yardsticks by which we estimate when humans as a species first appeared. It could also help us better protect large primates in the wild.

Deviations from the norm

Fewer new mutations occur per year in today’s humans than in our closest primate relatives, the study reports. The team sequenced the genomes of whole families (mother, father, and offspring) of chimpanzees, gorillas, and orangutans, looking at how many new mutations younger generations have compared to their elders. They then compared them with corresponding data from humans.

“Over the past six years, several large studies have done this for humans, so we have extensive knowledge about the number of new mutations that occur in humans every year,” says lead author Søren Besenbacher from Aarhus University.

“Until now, however, there have not been any good estimates of mutation rates in our closest primate relatives.”

Ten different families (seven of chimpanzees, two of gorillas, and one of orangutans) were involved in the study. All of them showed more mutations than you’d typically see in human families with parents of similar age, the team reports. Overall, they add, the annual mutation rate seen in humans is about one-third lower than what the team found in the primate families.

This higher rate would have an impact on the length of time estimated to have passed since humans and chimpanzees (our closest genetic relatives) speciated into distinct lineages. That’s because we estimate this time by looking at how different their genomes are from ours: a higher mutation rate would mean that differences accumulate over a shorter period of time, which would throw our estimations of the last common ancestor off.

This is the skull of Nyanzapithecus alesi, one of the closest species to a chimpanzee–human last common ancestor (CHLCA) we’re ever found. The only catch is that the skull came from an infant individual. It lived around 13 million years ago in today’s Kenya.
Image credits Fred Spoor via ScienceMag.

For example, if we apply the average mutation rate measured in humans (which we did up to now), human speciation/differentiation from chimps should have occurred around 10 million years ago. If we apply the new mutation rates the team presents, however, speciation should have taken place around 6.6 million years ago, the team writes.

“The times of speciation we can now calculate on the basis of the new rate fit in much better with the speciation times we would expect from the dated fossils of human ancestors that we know of,” explains co-author Mikkel Heide Schierup from Aarhus University.

The findings would also impact our estimate of when Neanderthals and modern humans split, too. Judging by the team’s findings, it should be closer to the present than we assumed (based on the same mechanism we’ve talked about with chimps, with some caveats).

A comparison of Neanderthal and Modern human skulls from the Cleveland Museum of Natural History.
Image via Wikimedia.

But that’s all about the past. The findings also have implications for the future, the team argues — especially in regards to great ape conservation.

“All species of great apes are endangered in the wild. With more accurate dating of how populations have changed in relation to climate over time, we can get a picture of how species could cope with future climate change,” says study co-author Christina Hvilsom from Copenhagen Zoo.

The paper “Direct estimation of mutations in great apes reconciles phylogenetic dating” has been published in the journal Nature Ecology and Evolution.

Was this helpful?
Thanks for your feedback!
Related posts:
  1. Ancient human fossil finger found in Arabia could rewrite our species’ history
  2. Smoking one pack a day causes your lung cells’ DNA to mutate 150 times every year
  3. New fossil rewrites the evolutionary history of sea lilies
  4. Peru meteorite forces scientists to rewrite books
  5. ‘Amazing dragon’ fossils in China rewrite the evolution of world’s most massive dinosaurs

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW