ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Geology

Scientists turn CO2 into rock in Iceland

Turning air into rock.

Alexandra GereabyAlexandra Gerea
July 19, 2016
in Climate, Geology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

An international team of scientists documented a potentially viable way to remove anthropogenic (caused or influenced by humans) carbon emissions from the atmosphere: by turning into rock.

Air photograph of Reykjavik Energy’s Hellisheidi geothermal power plant. Credit: Árni Sæberg

No matter how much you talk and spin it around, the problem with global warming bounds down to one thing: we’re outputting too much greenhouse gas into the atmosphere, especially carbon dioxide (CO2). But what if we could somehow cheat, and trap that CO2 and lock it away somewhere where it wouldn’t do any damage? That’s what many teams believe is a key point of mitigating climate change, and that’s exactly what scientists working in Iceland have done.

The CO2 interacts with the surrounding rock, forming environmentally benign minerals. The entire process is quite fast, and it could perhaps be scaled.

Carbon Capture and Storage (CCS) is a field of science where CO2 is extracted from the atmosphere and stored underground. Geologists have mostly focused on existing voids, such as former oil fields, but that’s tricky because the fields are susceptible to leakage. So instead, they’re now turning to mineralizations – turning CO2 into minerals. Until now, this process was thought of as unpractical because it takes too long to solidify the CO2, but researchers from Columbia University, University of Iceland, University of Toulouse and Reykjavik Energy have found a way to make it work in two years.

Lead author Dr Juerg Matter, Associate Professor in Geoengineering at the University of Southampton, says:

“Our results show that between 95 and 98 per cent of the injected CO2 was mineralised over the period of less than two years, which is amazingly fast.”

They key is basalt – a volcanic rock which Iceland has an abundance of. The whole Iceland is made up of basalt (90%), and the rock is also rich in calcium, magnesium in iron – key elements for carbon mineralization. The process is straightforward: CO2 is dissolved in water and carried down the well. When it comes into contact with the rocks, it reacts and starts forming carbonate minerals. After two years, the carbon is completely trapped.

“Carbonate minerals do not leak out of the ground, thus our newly developed method results in permanent and environmentally friendly storage of CO2 emissions,” says Dr Matter, who is also a member of the University’s Southampton Marine and Maritime Institute and Adjunct Senior Scientist at Lamont-Doherty Earth Observatory Columbia University. “On the other hand, basalt is one of the most common rock type on Earth, potentially providing one of the largest CO2 storage capacity.”

Already, the project is storing 10,000 tonnes of CO2 a year and many other areas are highly rich in basaltic rocks, which means the same could be applied elsewhere.

RelatedPosts

Huge methane deposits trapped in seabed sediments might get released due to warmer waters
Scientists Discover Missing Link Between Insects in Amazing Amber Fossil Dating Back 40 Million Years
Wikileaks reveals US bribes and cyber-espionage stop climate change action
Climate change has already harmed more than half of all mammals

“In the future, we could think of using this for power plants in places where there’s a lot of basalt and there are many such places,” said Martin Stute, at Columbia University in the US and part of the research team.

The big resource being used here is water – the process requires a lot of water, but thankfully, seawater can also be successfully used. Basalts are often found in proximity of oceans, so the problem could be solved with relative ease.

“The overall scale of our study was relatively small. So, the obvious next step for CarbFix is to upscale CO2 storage in basalt. This is currently happening at Reykjavik Energy’s Hellisheidi geothermal power plant, where up to 5,000 tonnes of CO2 per year are captured and stored in a basaltic reservoir.”

The project is part of research funded by the European Union. The investigation is part of the CarbFix project, a European Commission and U.S. Department of Energy funded programme to develop ways to store anthropogenic CO2 in basaltic rocks through field, laboratory and modelling studies.

 

Tags: carbon capturecarbon storageglobal warming

Share2TweetShare
Alexandra Gerea

Alexandra Gerea

Alexandra is a naturalist who is firmly in love with our planet and the environment. When she's not writing about climate or animal rights, you can usually find her doing field research or reading the latest nutritional studies.

Related Posts

Climate

This Solar-Powered Device Sucks CO2 From the Air—and Turns It Into Fuel

byTibi Puiu
3 weeks ago
Environment

New Solar Tech Captures CO₂ from air and Turns It into Fuel

byMihai Andrei
3 months ago
Science

With our current path, the planet is set to warm by 3 degrees Celsius. Here’s what that means

byMihai Andrei
4 months ago
Climate

Climate heating is killing the young, not the oldest

byMihai Andrei
4 months ago

Recent news

The Worm That Outsourced Locomotion to Its (Many) Butts

May 16, 2025

The unusual world of Roman Collegia — or how to start a company in Ancient Rome

May 16, 2025
Merton College, University of Oxford. Located in Oxford, Oxfordshire, England, UK. Original public domain image from Wikimedia Commons

For over 500 years, Oxford graduates pledged to hate Henry Symeonis. So, who is he?

May 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.