ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Biology

Dragon dinosaur could really run, glide and fly

Mihai AndreibyMihai Andrei
November 7, 2012 - Updated on August 24, 2023
in Biology, Geology
A A
Share on FacebookShare on TwitterSubmit to Reddit

Why would a dinosaur with a body built for running have not two, but four wings, as well as a feathered tail? There seems to be only one real reason: flying. But why would it need to fly in the first place? Paleontologists have long wondered about it, but now it seems, they’ve finally found an answer.

The small, crow-sized diosaur was a member of the Dromaeosauridae family, a family of small theropod dinosaurs. They were small- to medium-sized feathered carnivores that flourished in the Cretaceous Period. Microraptor’s aerodynamic wings allowed him to be a master of control, whether it was running on the ground, elegantly gliding or even flying.

“In terms of aerodynamics, the hind wings would have increased its rate of turn by 33 to 50 percent, compared to using only the front wings,” said Michael Habib of the University of Southern California, Los Angeles, who co-presented the research at an annual meeting of the Society of Vertebrate Paleontology in Raleigh, North Carolina, last month.

The world of small dinosurs was no less brutal or dangerous than that of big dinosaurs; competition was acerb and brutal, and even the slightest advantage was extremely important.

“No one’s going to argue that this was the fastest animal in the ecosystem,” Justin Hall of the Natural History Museum of Los Angeles County said. This was an animal about the size of a crow, living among predatory dinosaurs at a time when the largest animal in the air had a 15-foot [4.6-meter] wingspan! So, a 33-percent increase in turning speed could have meant the difference between life and death.”

There were however some problems with this idea. The long, narrow front wings seem perfectly suitable for flapping and gliding, but the short, bulky back wings tell a different tell – they would in fact impair flying. But Habib and Hall argue that perhaps lift wasn’t the point.

“If you were trying to use those blocky hind wings to glide, they would be very poor at that,” said Habib. “But if you care more about a very rapid, powerful motion such as turning than you do about sustained motion, being ‘draggy’ is fine.”

According to him, the way the dinosaur flew is really similar to how you would ride a canoe, helping yourself with the paddles.

“When you’re trying to turn a canoe quickly, often the best thing to do is to stick the paddle down in the water and produce a lot of drag.”

As Habib continued, and I have to admit I had no idea about this, there are three main rotational forces that affect flight: yaw (side to side), roll (circular), and pitch (up and down). The size, strength and location of Microraptor‘s hind legs would have improved all of them, but only yaw and roll would have actually helped it turn.

RelatedPosts

T. Rex, king of the dinosaurs — here’s what makes the tyrannosaur so fascinating
Incredibly well-preserved fossils show that dinosaurs also had dandruff
Fossil Friday: fossils of the largest predatory dinosaur ever found in Europe, unearthed on the Isle of Wight
After the dinosaurs went extinct, mammals crawled out of the dark to take over

So this leaves us with only a classic question to answer: which came first, running or flying? In other words, was it small dinosaurs that evolved wings and started dwelling in trees and flying, or the other way around? That’s still not clear, although the first option does seem more likely to paleontologists.

Microraptor, the cousin of the much better known Velociraptor was a fierce predator – don’t let the size fool you! Researchers once found a full bird conserved inside its stomach – all still digested in one piece. The fact that many fossils were found with bird bones inside suggests that they ate birds a lot, which suggests they spent a lot of time in trees, but this also doesn’t answer the question. Still, either way, control would have been of the essence.

“Why do eagles stick out their legs when they fly? It looks weird, right?” said Hall. “Well, they have a lot of feathers on those legs, so they’re producing a lot of drag. It leads to the implication that they’re doing it intentionally, for control.”

Source

Tags: aerodynamicdinosaurmicroraptorvelociraptor

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Geology

Identical Dinosaur Prints Found on Opposite Sides of the Atlantic Ocean 3,700 Miles Apart

byTibi Puiu
3 days ago
News

Dinosaurs Were Doing Just Fine Before the Asteroid Hit

byTibi Puiu
1 month ago
News

WWII bombing destroyed these fossils. Now, rediscovered old photos reveal a new colossal dinosaur

byTibi Puiu
5 months ago
Biology

200 Jurassic-era dinosaur footprints unearthed on UK’s largest dinosaur highway

byRupendra Brahambhatt
5 months ago

Recent news

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025

In the UK, robotic surgery will become the default for small surgeries

June 13, 2025

Bioengineered tooth “grows” in the gum and fuses with existing nerves to mimic the real thing

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.