Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → Biology

Kabuno Bay microbes shed light on how iron deposits are formed

An isolated bay in the heart of East Africa offers scientists a glimpse into early Earth's iron-rich marine environment, and lends weight to the theory that microbial activity created some of the largest iron ore deposits billions of years ago.

Alexandru Micu by Alexandru Micu
June 16, 2016
in Biology, Geology, News, Science

An isolated bay in the heart of East Africa offers scientists a glimpse into early Earth’s iron-rich marine environment, and lends weight to the theory that microbial activity created some of the largest iron ore deposits billions of years ago.

“Kabuno Bay is a time machine back to Earth’s early history when iron-rich ocean chemistry prevailed,” said Marc Llirós of the University of Namur, first author of the paper.

The unique chemical conditions of Kabunto Bay make it a great place if you’re an iron-eating bacteria.
Image via sicencedaily

The results from recent University of British Columbia (UBC) research, published this week in the journal Scientific Reports, shows how nearly 30 percent of the microbes in the Kabuno Bay area feed via a surprising process. They rely on oxidizing iron in the water for photosynthesis rather than the more wide-spread water-to-oxygen process we’re used to seeing in plants and algae.

“The bay is giving us real-world insight into how ancient varieties of photosynthesis may have supported Earth’s early life prior to the evolution of the oxygen producing photosynthesis that supports life today,” said UBC geomicrobiologist Sean Crowe, senior author of the study.

Bacteria that “dine” on iron aren’t news: they were discovered since 1993; the new study however is the first to provide evidence of how these microorganisms could have played the central role in depositing our planet’s oldest iron formations.

Our planet 2.3 billion years ago was a very different place. The atmosphere was nearly bereft of oxygen and the organisms of the time (mainly bacteria) relied on other chemical processes to produce the energy they required. Scientists have suspected for a while now that due to the high content of dissolved iron in Earth’s waters at the time, iron-metabolizing microbes would have had enough food to become one of the dominant forms of life during that period. The iron they used was in turn concentrated into minerals, that settled and consolidated along the ocean floor. The sheer amount of microbes would permit very large deposits to form over time.

However, there was no evidence to back up their theory — that is, until now. The UBC study of the Kabuno Bay area found that microbes metabolize iron and grow at rates high enough to suggest that their ancient equivalents were capable of forming even the largest of today’s sedimentary iron ore deposits, known as banded iron formations.

Example of a banded iron formation. Pwetty!
Image via pbase

By oxidizing iron, these microorganisms likely helped shape the chemistry of Earth over billions of years and forged the link leading to the evolution of more complex life such as plants and animals.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Catalog of rarest Earth minerals might shed light on how the planet formed, but also origin of life
  2. New theory suggests gold deposits were formed as a result of earthquakes
  3. Using a million suns to shed light on a fossilized plant
  4. Scientists find new microorganism that may shed light on evolution of complex cells
  5. Killer whales shed light on the mystery of menopause
Tags: Banded IronIron OreKabuno Baymicrobes

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW