ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Earth may have generated its own water – geologically

Mihai AndreibyMihai Andrei
January 13, 2015 - Updated on January 20, 2023
in Geology, News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

A new study may have finally found where Earth’s water came from. There are currently two competing theories, with one claiming that our planet generated its own water geologically, while the other suggests that water was brought by icy comets or asteroids from outside. A new study concluded that most of the water we see today likely comes from the Earth’s mantle.

Water beneath the surface

Image via Special Papers.

Until recently, the idea that water came to Earth from somewhere else in the solar system seemed to have more support, but studies conducted by the European Space Agency on the Rosetta missions showed that water almost certainly didn’t come from comets. Wendy Panero, associate professor of earth sciences at Ohio State, and doctoral student Jeff Pigott believe that when the Earth formed, it had huge bodies of water in its interior, and has been continuously supplying water to the surface via plate tectonics, circulating material upward from the mantle.

Researchers have long known that there is some water in the earth’s mantle, but nobody knows just how much. Because you can’t go 40 km deep and study the mantle, you have to rely on indirect information and computer simulations.

“When we look into the origins of water on Earth, what we’re really asking is, why are we so different than all the other planets?” Panero said. “In this solar system, Earth is unique because we have liquid water on the surface. We’re also the only planet with active plate tectonics. Maybe this water in the mantle is key to plate tectonics, and that’s part of what makes Earth habitable.”

The thing is, when we’re talking about water in the mantle, it’s not actually liquid water – what seems dry to the human eye may actually have significant quantities of water – in the form of hydrogen and oxygen waters. Hydrogen is typically stored in crystal voids and defects, while oxygen is usually plentiful in most minerals. Certain reactions can free up the hydrogen and oxygen, resulting in water; but could it be enough water to amount for the oceans we see today?

The key element here is ringwoodite.

High-Pressure Olivine

Olivine is a magnesium-iron silicate typically found in the mantle and igneous rocks. However, in the mantle, at very high pressures and temperatures, the olivine structure is no longer stable. Below depths of about 410 km (250 mi) olivine undergoes a transformation, transforming into ringwoodite or bridgmanite. Ringwoodite is notable for being able to contain hydroxide ions (oxygen and hydrogen atoms bound together) and previous research has already shown that the earth’s mantle holds huge quantities of water.

RelatedPosts

Stellar pollution shows exoplanets are more diverse than we thought — but few are like Earth
3 facts about water that prove it doesn’t play by the rules
Earth’s history gets rewritten by a single drop of water
The Origins of Water Ice on Mercury

Now, this team has found that the mineral bridgmanite doesn’t contain enough water to play a significant role in this issue – so it’s all about the ringwoodite. But the question is – if ringwoodite is trapped in the mantle and the water is drained towards the surface in plate tectonics, how does our planet still have water reserves now, in the mantle?

But while they were creating some models and simulations of ringwoodite water behavior, another likely candidate emerged: garnet. Garnet could be a water carrier, transporting some of the water to the surface, while some of it still remains in the mantle.

“If all of the Earth’s water is on the surface, that gives us one interpretation of the water cycle, where we can think of water cycling from oceans into the atmosphere and into the groundwater over millions of years,” she said. “But if mantle circulation is also part of the water cycle, the total cycle time for our planet’s water has to be billions of years.”

Tags: cometmantleOhio State Universityolivineplate tectonicsringwooditewater

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Mars waterbeds
News

Scientists Discover 9,000 Miles of Ancient Riverbeds on Mars. The Red Planet May Have Been Wet for Millions of Years

byJordan Strickler
1 month ago
Astronomy

Interstellar comet: Everything We Know About 3I/ATLAS

byMihai Andrei
1 month ago
News

Scientists Ranked the Most Hydrating Drinks and Water Didn’t Win

byTibi Puiu
1 month ago
Environment

New Global River Map Is the First to Include River Bifurcations and Canals

byRebecca Owen
3 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.