ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Geology

Scientists detect climate “smoking gun” signature in rivers

For decades, researchers have been trying to detect the influence of climate on river formation -- now, they've done it.

Mihai AndreibyMihai Andrei
September 16, 2019 - Updated on January 9, 2023
in Geology, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit
The Fremont Bridge across the Willamette River in Portland. Image via Wikipedia

Rivers are essential to mankind. Almost all major cities have been established around rivers. They have been used as a source of water and food since pre-history, and to this day, they are vital for settlements, often serving as an easy means of disposing of wastewater and as a channel for navigation.

Yet much like any other ecosystem, rivers are also affected by the climate. Researchers have known this for a while, but they’ve struggled to detect the influence of climate on the formation and evolution of rivers.

Rivers typically flow somewhere higher to somewhere lower. If you’d make a profile of a river, you’d end up with a path that descends in elevation — that’s pretty straightforward gravitationally, but the shape of this gradient is quite important.

According to conventional wisdom, these river profiles have a concave-up shape (similar to the inside of a bowl), with fluctuations serving as markers of interference from climate, tectonics, lithology, or human impact. However, not all rivers play by this rule. Some rivers have profiles with an almost zero concavity — in other words, they have almost ramp-like straight profiles.

It was thought that rivers have characteristic concave profiles as a result of increased flow with drainage area, which erodes the riverbed and transports more sediment. Image credits: S. A. Chen.

It’s not exactly clear why this variation in profile shape happens, but a new study might shed some light on that. The new research suggests that the shape of the river is essentially a signature of the long-term climate in the area: humid climates have more concave profiles whereas arid rivers have ramp-like profiles.

Lead author Shiuan-An Chen from the University of Bristol’s School of Geographical Sciences, said this comes as no surprise:

“The long profile is formed gradually over tens of thousands to millions of years, so it tells a bigger story about the climate history of region. We would expect climate to affect the river long profile because it controls how much water flows in rivers and the associated force of water to move sediment along the riverbed.”

It has traditionally been suggested that these shape variations are connected to climate, which makes sense. After all, climate directs rainfall, which in turn affects runoff and erosion, and further influences sediment deposition. But up until now, researchers lacked a systematic dataset of river profiles, spanning all the areas of Earth. Chen and colleagues produced this database (also making it freely available for anyone to use and study).

RelatedPosts

Why the Amazon is the widest river in the world
Man cleans up entire river on his way to work
Healthy Rivers Needed To Remove Nitrogen
Earth is much more rivery than we’ve suspected, satellite data reveals

The data for the river profiles came from NASA satellites and includes observations on over 330,000 rivers from all across the globe. It’s the first study that shows distinct river shapes across the different climate zones.

In humid regions, rivers tend to have consistent flow all year round. This means they continuously bring up sediment and erode the profile to a more concave shape until an equilibrium is reached. As the climate becomes drier, rivers cause less erosion, and in the aridest climates, the flow is very inconsistent. Using a numerical model which simulates river evolution, researchers were able to back up their observations and confirm that indeed, the climate is the main driver of this change.

Dr. Katerina Michaelides, also from Bristol’s School of Geographical Sciences, who led the research, added:

“Traditional theory included in textbooks for decades describes that river long profiles evolve to be concave up. Existing theories are biased towards observations made in humid rivers, which are far better studied and more represented in published research than dryland rivers.”

“Our study shows that many river profiles around the world are not concave up and that straighter profiles tend to be more common in arid environments.”

However, Michaelides also draws attention to the fact that most studies on rivers focus on areas where people tend to live — as a result, we know less about the rivers in the driest areas.

“I think dryland rivers have been understudied and under-appreciated, especially given that drylands cover ~40% of the global land surface. Their streamflow expression gives unique insights into the climatic influence on land surface topography,” she adds.

There is another important takeaway in this study: with the advent of both satellite data and high-power computing, researchers have unprecedented access to tools to study the Earth.

The study ‘Aridity is expressed in river topography globally’ by S-A. Chen, K. Michaelides, S. Grieve and M.B. Singer, has been published in Nature.

Tags: profileriver

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Animals

We’re using flea treatments on our pets and it’s polluting rivers and streams

byFermin Koop
4 years ago
Geology

Why is the ocean salty?

byMihai Andrei
5 years ago
Geology

The Nile is 30 million years old — and held together by movements in the Earth’s mantle

byMihai Andrei
6 years ago
Credit: Flickr
Environment

Magnetic coils, the new way to deal with microplastics

byFermin Koop
6 years ago

Recent news

AI and Brain Scans Reveal Why You Struggle to Recognize Faces of People of Other Races

May 13, 2025

Mysterious Stone Circles on Remote Scottish Island May Have Been Home to Humans Before Stonehenge Existed

May 12, 2025

People Spend $12,000 to Tattoo Their Eyes and Change Their Color but the Risks Are Still Unknown

May 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.