ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space → Astrophysics

Obese black holes outshone stars in earliest galaxies

Mihai AndreibyMihai Andrei
June 7, 2013
in Astrophysics, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

 

early galaxy Early galaxies were very different from those we see today – it was overgrown black holes, and not stars that lit them up, claims a new study; in it, it is suggested that these obese black holes were numerous and bright enough that we should be able to detect them now, billions of years after they shone.

Born fat?

But if we’re dealing with this kind of black holes, one can only wonder – were they born fat, or did it just happen gradually? They could have been born obese, from massive clouds of atomic hydrogen, up to a hundred million times as massive as the Sun, which collapsed into themselves.

Now Bhaskar Agarwal at the Max Planck Institute for Extraterrestrial Physics in Garching, Germany, and colleagues say we should be able to see if this was indeed the case – galaxies with few stars, each dominated by a giant black hole lit up by the same mechanism that illuminates quasars.

Wait, what’s a quasar?

That’s a big question. Most if not all galaxies have supermassive black holes at their centers. A quasar is the extremely luminous and very energetic area that surrounds this central supermassive black hole.

Could the same mechanism which powers up quasars light the early black holes? Through a combination of computer simulations and mathematical analysis, Agarwal and his collaborators suggest that there may have been many such obese black hole galaxies just a few hundred million years after the big bang.

Source

RelatedPosts

Death By Spaghettification! Astronomers Spot a Star Being Consumed by a Black Hole
Black hole bonanza discovered in neighboring galaxy
Hubble Discovers Huge Halo Around Andromeda Galaxy
The death cry of a star being destroyed by a black hole
Tags: quasarsupermassive black hole

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Science

Astronomers Capture the ‘Eye of Sauron’ Billions of Light Years Away and It Might Be the Most Powerful Particle Accelerator Ever Found

byTibi Puiu
3 days ago
News

A Supermassive Black Hole 36 Billion Times the Mass of the Sun Might Be the Heaviest Ever Found

byTibi Puiu
1 week ago
News

Astronomers Just Found the Most Powerful Cosmic Event Since the Big Bang. It’s At Least 25 Times Stronger Than Any Supernova

byTibi Puiu
2 months ago
This artist’s illustration shows the largest radio jet ever found in the early Universe. The jet was first identified using the international Low Frequency Array (LOFAR) Telescope, a network of radio telescopes throughout Europe. Follow-up observations in the near-infrared with the Gemini Near-Infrared Spectrograph (GNIRS), and in the optical with the Hobby Eberly Telescope, were obtained to paint a complete picture of the radio jet and the quasar producing it. GNIRS is mounted on the Gemini North telescope, one half of the International Gemini Observatory, funded in part by the U.S. National Science Foundation and operated by NSF NOIRLab. Historically, such large radio jets have remained elusive in the distant Universe. With these observations, astronomers have valuable new insights into when the first jets formed in the Universe and how they impacted the evolution of galaxies.
Science

Astronomers Discover Largest Radio Jet from the Early Universe. It’s Twice the Width of the Milky Way!

byTibi Puiu
6 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.