ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Home science

The math behind a snowflake

Mihai AndreibyMihai Andrei
January 21, 2008
in Home science, Mathematics
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Is there really a mathematical formula that predicts happy relationships?
Renowned mathematician claims “simple” solution to 160-year-old problem
Mathematician solves sudoku dilema: 17 minimum clues for a solution
The longest straight-line path on Earth is a 20,000-miles ocean journey

computer snowflake
Snowflakes have fascinated most of us since the beggining of time. They say that there are no two snowflakes alike and that isn’t very far away from the truth. No two snowflakes are truly alike, but they can be very similar to each other, said Janko Gravner, a mathematics professor at UC Davis.

Now he and other scientists from UC Davis have developed a computer program which creates three dimensional snowflakes. Their nature is intricate and incredibly variable which makes them beautiful and a constant source of fascination for mathematicians as well as other people. In fact they have been a source of mistery since 1611, when Johannes Kepler predicted that the six-pointed structure would reflect an underlying crystal structure.

The process in which they are formed is pretty simple; they grow from water vapor around a sort of nucleus, such as dust. The surface of the growing crystal is a complex, semi-liquid layer where water molecules from the surrounding vapor can attach or detach and also water molecules are more likely to attach at the concavities in the crystal shape. The computer program they created takes these things into consideration, as well as other things, such as temperature, atmospheric pressure and water vapor density. It takes about 24 hours to produce one “snowfake” on a modern desktop computer.

They discovered some strange structures, such as a “butterflake” that looks like three butterflies stuck together along the body. There is no reason for these not to exist in the nature except for the fact that they are very unstable. A surprise was to see that the three-dimensional structure is often important, with complex structures often growing between two plates and this was very hard to observe with natural snowflakes.

Tags: Mathematics

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Mathematics

Our Schools Have a Problem: Textbook Math Doesn’t Help in Real Life — and Vice Versa

byMihai Andrei
4 months ago
Mathematics

How To Solve Any Problem Using Enrico Fermi’s Back-Of-The-Envelope Math (And Some Common Sense)

byTibi Puiu
4 months ago
Science

There’s an infinity of infinities. And researchers just found two new infinities that break the rules of math

byTibi Puiu
5 months ago
Future

Opening the AI Black Box: Scientists use math to peek inside how artificial intelligence makes decisions

byTibi Puiu
5 months ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.