Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science

Researchers make chicken cells resist bird flu by snipping out a tiny bit of their DNA

There's still a long way to go before we have a full chicken, though.

Alexandru Micu by Alexandru Micu
June 4, 2019
in Animals, Biology, News, Science

Designer chicken cells grown in the lab at Imperial College London can resist the spread of bird flu.

Chicken.
Image credits Samet Uçaner.

Bird flu, as its name suggests, is mostly concerned with infecting birds. And it’s quite good at it: severe strains of bird flu can completely wipe out a whole flock. In rare cases, the virus can even mutate to infect humans, causing serious illness. As such, bird flu is a well-known and scary pathogen in the public’s eye.

Now, researchers from Imperial College London and the University of Edinburgh’s Roslin Institute have devised chicken cells that can resist infection with the bird flu virus. Their efforts pave the way towards effective control of the disease, safeguarding one of the most important domesticated animals of today.

Be-gone, flu

“We have long known that chickens are a reservoir for flu viruses that might spark the next pandemic. In this research, we have identified the smallest possible genetic change we can make to chickens that can help to stop the virus taking hold,” says Professor Wendy Barclay, Chair in Influenza Virology at Imperial College London and the paper’s corresponding author. “This has the potential to stop the next flu pandemic at its source.”

The findings could make it possible to immunize chickens to the virus using a simple genetic modification. No such chickens have been produced just yet, but the team is confident that their method will prove safe, effective, and palatable with the public in the long run.

The approach involves a specific molecule found in chicken cells, called ANP32A. Researchers at Imperial report that during a bird flu infection, viruses use this molecule to replicate (multiply) and continue attacking the host. The researchers from the University of Edinburgh’s Roslin Institute worked to gene-edit chicken cells to remove a portion of DNA that encodes the production of ANP32A.

With this little tweak, the team reports, the virus was no longer able to replicate inside the cells.

Members at The Roslin Institute have previously worked on something similar. Teaming up with researchers from Cambridge University at the time, they successfully produced gene-edited chickens that didn’t transmit bird flu to other chickens following infection. However, the approach they used at the time involved adding new genetic sequences into the birds’ DNA; while the proof-of-concept was very encouraging, the approach didn’t seem to stick, commercially.

“This is an important advance that suggests we may be able to use gene-editing techniques to produce chickens that are resistant to bird flu,” says Dr. Mike McGrew, of the University of Edinburgh’s Roslin Institute and a paper co-author.

“We haven’t produced any birds yet and we need to check if the DNA change has any other effects on the bird cells before we can take this next step.”

The paper “Species specific differences in use of ANP32 proteins by influenza A virus” has been published in the journal eLife.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. DNA tests reveal that Subway’s chicken only has 50% chicken
  2. H5N1 controversial paper shows that bird flu is only a genetic mutation away from mammal flu
  3. Meet the Chicken of the Woods – the mushroom that tastes like chicken
  4. Your resistance to flu is shaped by previous flu’s, and their type
  5. New Zealand parrot’s ‘laugh’ is so contagious other birds just can’t resist joining in
Tags: aviancellsChickensdnaflugenomeprotein

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW