ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Chemistry

Chemists uncover powerful reactivity, paving the way for a new class of molecules

Henry ConradbyHenry Conrad
August 18, 2014
in Chemistry, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

Chemists led by Nobel laureate K. Barry Sharpless have used what is called click chemistry to uncover unprecedented, powerful reactivity. This opens a new “chemical galaxy” of molecules, potentially paving the way for making drugs, plastics and unprecedented smart materials.

Professor Sharpless. Image via Scripps Research Institute.

Click chemistry is a term applied to chemical synthesis tailored to generate substances quickly and reliably by joining small units together. It is not a specific method, but rather a mix of methods that follows examples in nature. The term was first coined by Sharpless in 1998, and was further described, used and expanded in following years. Sharpless went on to win the Nobel Prize for his work on other reactions though. Nature routinely makes spiral or shaped molecules such as DNA, but until recently, researchers couldn’t make “left handed” or “right handed” molecules. The reactions developed by Sharpless (not click chemistry) enables them to create such molecules at will. Still, his even greater achievement is regarded to be click chemistry.

True click reactions have guaranteed reliability and are environmentally “green,” proceeding in water, under normal atmospheric conditions, and without significant byproducts. Now, he has proven the value of it once again highlighting new SuFEx—Sulfur Fluoride Exchange—reactions, which enable chemists to link molecules of their choice together using derivatives of a common commercial chemical considered essentially inert. In 2002, he and his team described another class of reactions, the copper-catalyzed azide-alkyne cycloaddition (CuAAC), which is of widespread use today in drug discovery, biology and materials science.

“This is a new, emergent phenomenon,” said Sharpless, the W.M. Keck Professor of Chemistry and member of the Skaggs Institute for Chemical Biology at TSRI.

But SuFEx offers even more reach and potential, especially as the team was able to reliably and predictably manage the reactivity of SuFEx, giving access to a new class of molecules.

“Sulfer fluoride compounds are known for their high stability, yet we eventually realized that there are ways to make them usefully reactive—the speed and varied reaction environment it tolerates is amazing,” said Jiajia Dong, a research associate at TSRI and lead author of the new report.

In the history of biological life on Earth, sulfate molecules have never been found, but SuFEx has been shown to be tolerated by and within the chemistry of life. The key here was SO2F2, the commercial gas known as Vikane – the world’s most common fumigant, a cheap and readily available chemical. The team reports that they will quickly be able to reduce manufacturing costs for existing products and start working on developing new products for various industries.

“We believe that we can, with near-perfect control, use sulfur fluorides as general connectors for joining molecular building blocks,” said Dong.

The reaction can also produce polysulfate plastics, a whole class of relatively unexplored materials. Polysulfate plastics are strong, resilient and transparent, with the potential to replace the ubiquitous polycarbonate polymers. As a matter of fact, initial tests indicate this new plastic may be more resistant to impact and degradation than polycarbonates.

“But this was just one demonstration of the technique,” Dong emphasized. “The control and the selectivity that we have in this process mean that we can polymerize a wide variety of different building blocks.”

Chemists are now figuring out the potential applications of SuFEx.

RelatedPosts

From hazy ouzo to clear math: the science behind a milky mystery
First biological function of mercury discovered
Nobel Prize in Chemistry awarded to Martin Karplus, Michael Levitt And Arieh Warshel
Pluto’s Moon Charon Just Got More Fascinating After JWST Finds Carbon Dioxide

Journal Reference: Dr. Jiajia Dong, Dr. Larissa Krasnova1, Prof. M. G. Finn andProf. K. Barry Sharpless. Sulfur(VI) Fluoride Exchange (SuFEx): Another Good Reaction for Click Chemistry. Article first published online: 11 AUG 2014 DOI: 10.1002/anie.201309399

Tags: ChemistrySuFExsulfate

ShareTweetShare
Henry Conrad

Henry Conrad

Henry Conrad is an avid technology and science enthusiast living in Albuquerque, New Mexico with his four dogs. Aside from being a science geek and playing online games, he also writes poems and inspirational articles and short stories just to dabble on his creative side.

Related Posts

Astronomy

Pluto’s Moon Charon Just Got More Fascinating After JWST Finds Carbon Dioxide

byMihai Andrei
8 months ago
News

From hazy ouzo to clear math: the science behind a milky mystery

byMihai Andrei
9 months ago
Elastene is used in most of sportswear. Image credits: PxHere.
Environment

Scientists figured out a way to recycle clothes — without needing to burn them

byFermin Koop
1 year ago
Applied Chemistry

Click chemistry: building molecules like LEGO blocks

byMihai Andrei
2 years ago

Recent news

A Chemical Found in Acne Medication Might Help Humans Regrow Limbs Like Salamanders

June 11, 2025

Everyone Thought ChatGPT Used 10 Times More Energy Than Google. Turns Out That’s Not True

June 11, 2025

World’s Smallest Violin Is No Joke — It’s a Tiny Window Into the Future of Nanotechnology

June 11, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.