ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

You can now heal wounds without scar tissue

Newly discovered growth factors can regenerate the skin once a wound heals, instead of forming scars.

Tibi PuiubyTibi Puiu
January 9, 2017
in Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

University of Pennsylvania and the University of California researchers have found a way to heal wounds and prevent scar tissue from forming. Newly identified growth factors, particularly Bone Morphogenetic Protein (BMP), instruct scar tissue-forming cells to transform into fat, regenerating the skin.

Healing without scars

scar tissue
Credit: Science.

For many people, scar tissue is undesirable because of its unappealing looks. Scars themselves aren’t ugly — the discontinuity in an otherwise continuous smooth and familiar surface is. That’s because scar tissue lacks hair follicles and has a particular texture due to the absence of fat cells.

Myofibroblasts are one of the main cells found in healing wounds and their presence leads to scar formation. So, the researchers tried to find a way to turn these cells into something else, like adipocytes — the fat cells present in normal skin. Of course, that’s easier said than done. Previously, this sort of conversion was deemed impossible.

“Essentially, we can manipulate wound healing so that it leads to skin regeneration rather than scarring,” said George Cotsarelis, MD, the chair of the Department of Dermatology and the Milton Bixler Hartzell Professor of Dermatology at Penn, and the principal investigator of the project. “The secret is to regenerate hair follicles first. After that, the fat will regenerate in response to the signals from those follicles.”

The researchers first learned that hair and fat are produced separately but not independently. Knowing this, Cotsarelis and colleagues used a trial and error approach to discover the growth factors necessary for the formation of hair follicles. They then struck jackpot with the discovery of growth factors produced by the regenerating hair follicle that convert the surrounding myofibroblasts into fat. What happened was the skin became regenerated, instead of the wound turning into a scar tissue, as reported in the journal Science.

Because the fat is dependent on the new hairs, it will not form otherwise. However, the new cells are indistinguishable from the pre-existing fat cells, which makes the healed wound look like nothing happened instead of leaving a nasty, permanent impression on the skin.

“Typically, myofibroblasts were thought to be incapable of becoming a different type of cell,” Cotsarelis said. “But our work shows we have the ability to influence these cells, and that they can be efficiently and stably converted into adipocytes.” This was shown in both the mouse and in human keloid cells grown in culture.

“The findings show we have a window of opportunity after wounding to influence the tissue to regenerate rather than scar,” said the study’s lead author Maksim Plikus, PhD, an assistant professor of Developmental and Cell Biology at the University of California, Irvine.

The main application of such a therapy is obvious, as many people would love to have their wounds healed sans scaring. But there’s more potential to it than meets the eye. More fat cells in the tissue is desirable for some patients, like those suffering from HIV, who have adipocyte loss. Wrinkles, especially the very deep variety present on the skin, appear because adipocyte cells are lost to aging, so that’s another big demand waiting to be filled.

Researchers are now working on ways to make their findings transferable to the real world, a.k.a. turn it into a cream or something similar.

RelatedPosts

Scientists equip sharks with scientific equipment and send them to study the world’s largest seagrass hotspot in The Bahamas
Language Feature Unique To Human Brain Identified
AI draws amazing caricatures from photos
Small Pacific island state of Niue pledges to protect 100% of its ocean, create sanctuary the size of Italy

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

The disturbing reason why Japan’s Olympic athletes wear outfits designed to block infrared

byMihai Andrei
54 minutes ago
Erin Kunz holds a microelectrode array in the Clark Center, Stanford University, on Thursday, August 8, 2025, in Stanford, Calif. The array is implanted in the brain to collect data. (Photo by Jim Gensheimer)
Future

Brain Implant Translates Silent Inner Speech into Words, But Critics Raise Fears of Mind Reading Without Consent

byTibi Puiu
2 hours ago
News

‘Skin in a Syringe’ Might be the Future of Scar Free Healing For Burn Victims

byTibi Puiu
2 hours ago
Health

A Bacterial Protein Could Become the First True Antidote for Carbon Monoxide Poisoning

byTibi Puiu
4 hours ago

Recent news

The disturbing reason why Japan’s Olympic athletes wear outfits designed to block infrared

August 19, 2025
Erin Kunz holds a microelectrode array in the Clark Center, Stanford University, on Thursday, August 8, 2025, in Stanford, Calif. The array is implanted in the brain to collect data. (Photo by Jim Gensheimer)

Brain Implant Translates Silent Inner Speech into Words, But Critics Raise Fears of Mind Reading Without Consent

August 19, 2025

‘Skin in a Syringe’ Might be the Future of Scar Free Healing For Burn Victims

August 18, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.