ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Biology

Small cells allowed flowering plants to take over the world

Size isn't everything.

Elena MotivansbyElena Motivans
January 16, 2018
in Biology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

Flowering plants are the most common type of plant in the world right now. However, it has been a mystery how they became so successful so quickly. Charles Darwin himself called it an “abominable mystery” because he thought that their sudden success might weaken his theory of evolution. Now, researchers have found that flowering plants are so successful because of their cell size, which is smaller than any other plant type. Darwin is safe, after all.

Flowering plants are extremely diverse. Image credits: Alvesgaspar, Tony Wills.
Flowering plants are extremely diverse. Image credits: Alvesgaspar, Tony Wills.

Most of our plant-based food comes from flowering plants, and they are incredibly diverse, ranging from cacti to fruit trees. They sustain us and are the reason why we have so many diverse animals that have adapted particularly to eat certain food types.

Researchers have found recently that flowering plants have unprecedented photosynthetic rates, which explains why flowering plants can grow much more quickly than ferns and conifers. They could then be more successful and outcompete other plant types. Their success is due in a large part to very specialized leaves that allow them to photosynthesize quickly.

Now, Kevin Simonin from Sand Francisco State University and Adam Roddy from Yale University have discovered how flowering plants have such specialized leaves. They reviewed data on the genome size of hundreds of plants, including many different plant types, held at the Royal Botanic Gardens, Kew. The authors linked genome size with plant anatomy such as pores and veins on leaves.

The researchers discovered that the key is the genome size of the plant cells. Plant genomes decreased for the first time 140 million years ago, which is when the earliest flowering plants existed. The smaller genome size allows plant cells to be smaller and more cells can be packed into the same volume. The plants can have more cells for photosynthesis and delivering water and nutrients. Therefore, they can take up more carbon dioxide and gain more carbon.

Journal reference: Kevin A. Simonin, Adam B. Roddy. Genome downsizing, physiological novelty, and the global dominance of flowering plants. PLOS Biology, 2018; 16 (1): e2003706 DOI: 10.1371/journal.pbio.2003706

 

RelatedPosts

This facial reconstruction shows what a Paleolithic teenage girl looked like more than 30,000 years ago
Cynics are thrice as likely to develop dementia
The emissions of Bitcoin are comparable to a smaller country
Copenhagen takes bike lanes to another level… literally

ShareTweetShare
Elena Motivans

Elena Motivans

I've always liked the way that words can sound together. Combined with my love for nature (and biology background), I'm interested in diving deep into different topics- in the natural world even the most mundane is fascinating!

Related Posts

Environment

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

byTudor Tarita
19 hours ago
Anthropology

Women Rate Women’s Looks Higher Than Even Men

byTudor Tarita
19 hours ago
Art

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

byTibi Puiu
2 days ago
News

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

byTibi Puiu
2 days ago

Recent news

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

June 14, 2025

Women Rate Women’s Looks Higher Than Even Men

June 14, 2025

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.