Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Environment → Animals

Moon Jellyfish morphs back into symmetry after losing limbs

A novel, previously unseen self-repair mechanism was reported by a team of researchers at Caltech who studied the moon jellyfish. A lot of animals, mostly invertebrates, grow back their lost limbs after these are bitten off by predators or lost in an accident. The moon jellyfish, however, employs a different tactic altogether: instead of expending a lot of energy to regrow its lost limb, the animal re-arranges the limbs it has left to regain symmetry. Even when it's left with two limbs out of its initial eight, the jellyfish will still re-arrange itself. This sort of mechanism might prove extremely useful in designing self-repairing robots.

Tibi Puiu by Tibi Puiu
June 22, 2015
in Animals, Biology

A novel, previously unseen self-repair mechanism was reported by a team of researchers at Caltech who studied the moon jellyfish. A lot of animals, mostly invertebrates, grow back their lost limbs after these are bitten off by predators or lost in an accident. The moon jellyfish, however, employs a different tactic altogether: instead of expending a lot of energy to regrow its lost limb, the animal re-arranges the limbs it has left to regain symmetry. Even when it’s left with two limbs out of its initial eight, the jellyfish will still re-arrange itself. This sort of mechanism might prove extremely useful in designing self-repairing robots.

Back in symmetry

The moon jellyfish. Image: Terra Spirit
The moon jellyfish. Image: Terra Spirit

Aurelia aurita or the moon jellyfish is one of the most common jellyfish species in the world. It’s translucent, usually about 25–40 cm and easily recognizable by its four horseshoe-shaped gonads visible at the center of the bell. It’s remarkable though that given the animal has been widely studied, it’s only recently that we learn of its unique self-repair ability.

“We’ve now observed another self-repair mechanism,” says researcher Michael Abrams of the California Institute of Technology (Caltech), a graduate student in biology and biological engineering. “It kind of broadens our definition, a little bit, of self-repair.”

Abrams and colleagues focused on larval moon jellies, known as ephyrae. During this stage, the juveniles only measure 1cm in diameter, but they’re limbs look and behave just as in the adult stage. Typically, the moon jellies are born with eight limbs arranged in a radial pattern.

Initially, the researchers wanted to see if the jellyfish could regrow its lost limbs, like other invertebrates. So they amputated one or several limbs from anesthetized ephyrae then introduced them to their familiar salt water environment. The jellyfish didn’t regrow the lost limbs, but instead behaved far more remarkably.

The moon jellyfish move ther remaining limbs around to become symmetrical again. Image: Michael Abrams and Ty Basinge
The moon jellyfish move ther remaining limbs around to become symmetrical again. Image: Michael Abrams and Ty Basinge

In the image above, the top row shows the process of symmetrization after losing four of eight limbs. The bottom row shows the same process after losing five of eight limbs. Basically, the symmetrization occurred with whatever limbs the jellyfish had left, even just with two.

“Pretty quickly, we realized that they were doing something very different than what anyone had ever talked about before,” Abrams says.

The jellyfish likely adapted this feature because symmetry is essential to its survival. The symmetrical limbs act like paddles which help the animal swim and pull food towards the central mouth. “And you can imagine how this paddling surface would be disturbed if you have a big gap between the arms,” Abrams said.

To study how the moon jellyfish re-arranges itself, the researchers used a cell proliferation stain to track cell death and birth. Even more surprising, the animals didn’t use cell growth or shrank parts to re-purpose itself. Instead, most likely the pulsing of the muscles is behind the mechanism. As the creatures swims about, it pulls the remaining arms into new positions. When they put this hypothesis to the test by applying muscle relaxers, the amputee jellyfish were unable to regain symmetry, as reported in PNAS.

Remember, all of this happen inside a creature with no brain! Robots, aren’t that far behind so this neat trick might be helpful. A damaged robot can’t grow back a mechanical part, put it can sure reconfigure itself to become functional again. The moon jellyfish might serve as an example.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Scientists strap controller onto jellyfish, turn it into a super-fast cyborg-jellyfish
  2. Beautiful symmetry — 3D reconstructions of viruses
  3. The Chameleon vine: the only plant that morphs host plants near it
  4. Researchers successfully regrow limbs on frogs. They want to do the same thing with humans
  5. It’s not just limbs. Sea spiders can also regrow body parts after amputation
Tags: jellyfishsymmetry

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW