ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Biology

Mesozoic baby bird fossil sheds new light on evolution

It's impressive that we can learn so much about something so fragile, from so long ago.

Mihai AndreibyMihai Andrei
March 5, 2018 - Updated on August 24, 2023
in Biology, Geology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

A tiny, 127-million-year-old fossil, is helping paleontologists gain a new understanding of the earliest birds. The unfortunate individual — who lived for a very brief amount of time — could show us how these ancient avians came into the world of dinosaurs, and how much they depended on their parents.

Phosphorous mapping image and photo of the fossil. Image credits: Dr. Fabien Knoll.

Birds are a rather unusual group of animals, but they’re certainly one of the most successful in our planet’s history. It’s hard to say exactly when they emerged as a group, though paleontologists agree it was at some point in the Mesozoic (there is an ongoing debate between birds originating in the Cretaceous and the Jurassic). The well-known early Archaeopteryx dates from Jurassic rocks (about 155 million years old), but there is evidence of even earlier avians.

The early history and evolution of birds and bird-like creatures still holds plenty of mysteries. The bird fossil record is not extensive — their bones are hollow, thin, and fragile, much less likely to preserve through fossilization. This is exactly why this newly discovered fossil is so special: it’s extremely fragile, and yet it was brilliantly preserved for 127 million years ago.

Luis Chiappe, from the L.A. Museum of Natural History and the study’s co-author, explains:

This new discovery, together with others from around the world, allows us to peek into the world of ancient birds that lived during the age of dinosaurs. It is amazing to realise how many of the features we see among living birds had already been developed more than 100 million years ago.’

Artist impression of Enantiornithes by artist Raúl Martín.

It measures less than five centimeters (smaller than the average small finger on the human hand) and weighs less than 85 grams (three ounces). It’s comparable in size to a cockroach. What makes it extra special is that it was fossilized not long after its birth, in a period where its skeleton was just being developed. Chiappe’s, colleague, Fabien Knoll, says that this window of time offers a unique glimpse into the early birds’ evolutionary processes.

‘The evolutionary diversification of birds has resulted in a wide range of hatchling developmental strategies and important differences in their growth rates. By analysing bone development we can look at a whole host of evolutionary traits.’

But with the fossil being so small, paleontologists had to overcome challenges. Thankfully, they now have access to an arsenal of scientific instruments, being able to analyze even extremely small features. Here, they used a method called synchrotron radiation to image the fossil at the ‘submicron’ level, observing the bones’ microstructures in extreme detail. Knoll comments:

‘New technologies are offering palaeontologists unprecedented capacities to investigate provocative fossils. Here we made the most of state-of-the-art facilities worldwide including three different synchrotrons in France, the UK and the United States.’

Dr. Fabien Knoll working in the lab. Image credits: Fabiel Knoll.

With this technique, the team found that the baby bird’s sternum (breastplate bone) was largely made of cartillage, and was not turned into bone yet. This means the bird wouldn’t have been able to fly, and would have likely been dependent on its parents. Some birds are like this, relying entirely on their parents to feed and care for them in their earliest days (a feature called ‘altricial’), while others, like chicken, are highly independent (something which is known as ‘precocial’). However, this isn’t a black and white thing — it’s more like a spectrum. This finding indicates that these early birds were more on the altricial side, but it also suggests that their early developmental strategies were much more diverse than we thought.

RelatedPosts

Dracula mammal lived with the dinosaurs in Transylvania
Chinese pandas will slash over 2.74 tons of CO2 emissions in the next 25 yeas — because they’re solar plants
Utah tourists are destroying ancient dinosaur tracks — and throwing them into the water
This bird mimics a toxic caterpillar

The paper ‘A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds’ is being published in Nature Communication. DOI: 10.1038/s41467-018-03295-9. Fabien Knoll et al.

Tags: birdfossil

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Geology

Scientists Analyzed a Dinosaur’s Voice Box. They Found a Chirp, Not a Roar

byTudor Tarita
2 weeks ago
News

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

byTibi Puiu
2 months ago
a denisovan skull
Anthropology

The Face of a Ghost: 146,000-Year-Old Skull Finally Reveals What Denisovans Looked Like

byMihai Andrei
2 months ago
Geology

Identical Dinosaur Prints Found on Opposite Sides of the Atlantic Ocean 3,700 Miles Apart

byTibi Puiu
2 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.