ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Astronomy

“π Earth”: Astronomers discover Earth-sized planet that takes 3.14 days to orbit its star

Like clockwork, the planet moves around its star in Pi days.

Mihai AndreibyMihai Andrei
September 22, 2020
in Astronomy, News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

Every new exoplanet discovery is remarkable in its own way, and if that planet happens to be Earth-sized, it’s even more special. If it’s connected to a famous constant (Pi), it’s basically an astronomy party.

Pi, the ratio of a circle’s circumference to its diameter, isn’t exactly 3.14. In fact, it’s 3.141592653589793238… and goes on forever. But for most people, 3.14 is a good enough approximation — and for the astronomers looking for this new planet, the similarity was too striking.

“The planet moves like clockwork,” says Prajwal Niraula, a graduate student in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS), who is the lead author of a paper published today in the Astronomical Journal, titled: “π Earth: a 3.14-day Earth-sized Planet from K2’s Kitchen Served Warm by the SPECULOOS Team.”

“Everyone needs a bit of fun these days,” says co-author Julien de Wit, of both the paper title and the discovery of the pi planet itself.

The planet is called K2-315b but already, astronomers have nicknamed it π Earth. It’s the 315th planetary system discovered with data from K2, the successor of the Kepler telescope — just one shy from another coincidence that would have made it number 314.

The first signs of the planet were reported in 2017, but it was only confirmed more recently. π Earth has approximately 95% of Earth’s mass, making it essentially Earth-sized, and orbits a star that’s 5 times smaller than the Sun.

However, there’s virtually no chance of life as we know it on the planet. For starters, the planet orbits very close to its star, and astronomers estimate that it heats up to around 450 Kelvin (177 degrees Celsius, or 350 degrees Fahrenheit). As mentioned, the planet also circles its star every 3.14 days — so a ‘year’ on the planet is little more than three days, which means it moves at a blistering speed of 81 kilometers per second, or about 181,000 miles per hour (compared to 30 km/s at the Earth’s equator).

However, the planet is interesting in itself, more than being a mathematical curiosity.

“This would be too hot to be habitable in the common understanding of the phrase,” says Niraula, who adds that the excitement around this particular planet, aside from its associations with the mathematical constant pi, is that it may prove a promising candidate for studying the characteristics of its atmosphere.

“We now know we can mine and extract planets from archival data, and hopefully there will be no planets left behind, especially these really important ones that have a high impact,” says de Wit, who is an assistant professor in EAPS, and a member of MIT’s Kavli Institute for Astrophysics and Space Research.

The researchers are also interested in a follow-up study on the Pi planet with the upcoming James Webb Space Telescope (JWST), to see potential details of the planet’s atmosphere. For now, they are combing through other telescope datasets for signs of Earth-like planets — Pi or non-Pi.

RelatedPosts

For the First Time Ever We Can See Planets Starting to Form Around a Star
Meet TESS — the new exoplanets detective
The James Webb telescope just found a planet by actually ‘seeing’ it
Easier (but still not easy) way to other habitable planets

The study has been published in the Astronomical Journal.

Tags: piplanet

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

This is HOPS-315, a baby star where astronomers have observed evidence for the earliest stages of planet formation. The image was taken with the Atacama Large Millimeter/submillimeter Array (ALMA), in which ESO is a partner. Together with data from the James Webb Space Telescope (JWST), these observations show that hot minerals are beginning to solidify. In orange we see the distribution of carbon monoxide, blowing away from the star in a butterfly-shaped wind. In blue we see a narrow jet of silicon monoxide, also beaming away from the star. These gaseous winds and jets are common around baby stars like HOPS-315. Together the ALMA and JWST observations indicate that, in addition to these features, there is also a disc of gaseous silicon monoxide around the star that is condensing into solid silicates –– the first stages of planetary formation.
News

For the First Time Ever We Can See Planets Starting to Form Around a Star

byJordan Strickler
2 weeks ago
Astronomy

The James Webb telescope just found a planet by actually ‘seeing’ it

byMihai Andrei
1 month ago
News

This Planet Is So Close to Its Star It Is Literally Falling Apart, Leaving a Comet-like Tail of Dust in Space

byJordan Strickler
3 months ago
News

Astronomers Discover 128 New Moons Around Saturn Securing Its Title as the Moon King and Leaving Jupiter in the Dust

byTibi Puiu
5 months ago

Recent news

Computer simulations showing different ornamental uses of a trilobite fossil.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

August 1, 2025

These wolves in Alaska ate all the deer. Then, they did something unexpected

August 1, 2025

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

August 1, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.