Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result

Home → Science

Astronomers capture first-ever image of black hole’s ring-like structure and powerful jet

Scientists image M87 black hole's accretion disk and jet in unprecedented detail.

Jordan Strickler by Jordan Strickler
April 28, 2023
in News, Science, Space
Edited and reviewed by Tibi Puiu
illustration of black hole jet
Artist’s conception shows the accretion flow and the jet emerging from black hole region in Messier 87. (Credit: Sophia Dagnello, NRAO/AUI/NSF)

For the first time, scientists have produced an image revealing the ring-like structure of the accretion disk around a black hole and its associated powerful relativistic jet.

The black hole in question is Messier 87 (M87), a supermassive black hole 55 million light-years away which weighs in at approximately 6.5 billion times the mass of our Sun. Until now, astronomers have only been able to see M87 itself and the jet it produces in independent photos. Now, an international team of researchers has retrieved an image showing M87 and its jet both together in a panoramic picture at a wavelength of 3.5 mm.

“Previously we had seen both the black hole and the jet in separate images, but now we have taken a panoramic picture of the black hole together with its jet at a new wavelength,” says Ru-Sen Lu, from the Shanghai Astronomical Observatory and leader of a Max Planck Research Group at the Chinese Academy of Sciences.

Jets emitted from black holes can flow hundreds of thousands of light years and are still one of the cosmos’ many mysteries. Astronomers hope this new find can help answer some questions, like how they are created.

The image was created using the Global Millimeter VLBI Array (GMVA), a network of telescopes around the world that work together to produce high-resolution images of astronomical objects. This research made use of data obtained with the GMVA, which consists of telescopes operated by the Max-Planck-Institut für Radioastronomie (MPIfR), Institut de Radioastronomie Millimétrique (IRAM), Onsala Space Observatory (OSO), Metsähovi Radio Observatory (MRO), Yebes, the Korean VLBI Network (KVN), the Green Bank Telescope (GBT) and the Very Long Baseline Array (VLBA).

The combination of these observatories allowed the research team to image the ring-like structure around the black hole for the first time at this wavelength.

A powerful jet from Messier 87’s supermassive black hole. (Credit: R.-S. Lu [SHAO], E. Ros [MPIfR], and S. Dagnello [NRAO/AUI/NSF])

“With the greatly improved imaging capabilities by adding ALMA and GLT into GMVA observations, we have gained a new perspective,” said Thomas Krichbaum of MPIfR. “We do indeed see the triple-ridged jet that we knew about from earlier VLBI observations. But now we can see how the jet emerges from the emission ring around the central supermassive black hole and we can measure the ring diameter also at another (longer) wavelength.”

YouTube video

The diameter of the ring in the image is 50 percent larger than what was seen in previous observations by the Event Horizon Telescope at 1.3 mm. M87’s diameter measured by the GMVA is 64 microarcseconds. That is equivalent to the size of a small selfie ring light on Earth as seen by an astronaut on the Moon.

YouTube video

The new observations also reveal more details about the location and energy of the highly energetic electrons that produce the synchrotron radiation detected from M87. The team used computer simulations to test different scenarios and concluded that the larger extent of the ring is associated with the accretion flow.

Researchers also found something “surprising” in their data: the radiation from the inner region close to the black hole is broader than expected. This could mean more than just gas falling into the black hole. There could also be a wind blowing out, causing turbulence and chaos around it.

Despite this discovery, the quest to learn more about M87 is far from over. Future observations at millimeter wavelengths will study the time evolution of the black hole and provide a polychromatic view with multiple color images in radio light. With a fleet of powerful telescopes at their disposal, scientists will continue to unlock the secrets of the universe and reveal the mysteries of the cosmos.

Was this helpful?
Thanks for your feedback!
Related posts:
  1. Astronomers capture rare image of black hole plasma jet for the second time
  2. Astronomers are on the lookout for low-frequency gravitational waves generated by merging supermassive black holes
  3. Why does Jupiter lack a true ring structure?
  4. Scientists directly image particle jet emitted by supermassive black hole devouring a star
  5. Orbiting supermassive black holes confirmed by astronomers for the time
Tags: black holeM87Messier 87

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW