ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Agriculture

We’re going to need more fertilizer if we want to feed the world – much more

According to a new study, we have to increase our phosphorus-based fertilizer production 4 times if we want to satisfy global food needs by 2050.

Mihai AndreibyMihai Andrei
February 16, 2016
in Agriculture, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Fun and Exciting Chemical Experiments for Teaching and Learning
What is oxidation? A journey through the world of redox reactions
Nobel Prize in Chemistry awarded to Martin Karplus, Michael Levitt And Arieh Warshel
What are the strong chemical bonds?

According to a new study, we have to increase our phosphorus-based fertilizer production 4 times if we want to satisfy global food needs by 2050.

Photo by Lynn Betts.

As human population continues to increase, so do the challenges on global food production. Fertilizers especially are a point of focus, and phosphorous is a key component of many fertilizers. However, like many other nutrients, phosphorous can be depleted, especially when manure is collected and then used to fertilize arable cropland. The phosphorous (in the manure) is basically relocated from grasslands to agricultural lands, creating an imbalance. If grasslands phosphorous is depleted, then the productivity will be severely compromised. Many meat and dairy products depend on this productivity, and this disruption could affect global food production, authors argue.

Martin van Ittersum and colleagues use data collected between the years 1975 and 2005 by the Food and Agriculture Organisation of the United Nations (FAO) in order to build the first global model of phosphorus budgets in grasslands. They found that most grasslands in the world have a negative phosphorous balance – which means they lose more phosphorous than they gain. At some point in the future, the phosphorous reserves will simply become insufficient.

According to their findings, in addition to the fertilizers we’re using on agricultural lands, we’re also going to need fertilizers for grasslands.

So far, the largest negative balance is in Asia, while the only areas with a neutral or positive phosphorous balance are North America and Eastern Europe.

Tags: Chemistryfertilizerphosphorous

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Astronomy

Pluto’s Moon Charon Just Got More Fascinating After JWST Finds Carbon Dioxide

byMihai Andrei
11 months ago
News

From hazy ouzo to clear math: the science behind a milky mystery

byMihai Andrei
12 months ago
Elastene is used in most of sportswear. Image credits: PxHere.
Environment

Scientists figured out a way to recycle clothes — without needing to burn them

byFermin Koop
2 years ago
Applied Chemistry

Click chemistry: building molecules like LEGO blocks

byMihai Andrei
2 years ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.