ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Agriculture

How plants decide when to flower and when to grow

Flower life seems simple enough, but there is some important decision-making involved.

Mihai AndreibyMihai Andrei
September 19, 2019 - Updated on January 31, 2023
in Agriculture, Biology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

An ancestral plant could help researchers understand when and why plants start to blossom.

Depiction of liverworts from Ernst Hackel‘s Kunstformen der Natur, 1904.

It’s easy to think that flowers have been around forever, but they actually haven’t been around for that long — well, in geological time at least. Flowering plants have emerged some 130 million years ago, during a period called the Cretaceous; for comparison, sharks have been around for more than 3 times that period. However, although flowering plants appeared relatively late (the first land plants emerged more than 700 million years ago), they are the most diverse group of land plants.

The act of flowering (which is essentially producing the plant’s reproductive structure) is quite complicated though. The transition to flowering is one of the biggest changes that a plant makes during its lifecycle. The time needs to be right, the environmental conditions need to be right, and the plant needs to have sufficient resources to trigger the changes. Without the environmental cues that trigger changes in the plant’s hormones, without a cold period to trigger vernalization, plants just don’t flower.

In some cases, plants choose to invest the energy for flowering into growing bigger. It’s kind of like a fallback investment: you don’t get to reproduce, but you get bigger, you’ll presumably have access to more energy and nutrients, and you’ll reproduce more the next time.

But not only flowering plants have to make this decision. In order to assess when this happens, a team of researchers working in Japan studied liverwort, a descendant of the first plants to move out of the ancient oceans and onto land.

Liverwort grows all over the world. It looks a bit like moss and also prefers the shady and cool environments that moss thrives in. Liverwort and moss are part of a group called Bryophyta. They don’t produce flowers and instead reproduce through spores, but fundamentally, the decision they must make is the same — although there are major differences, reproduction is always “expensive” in the plant world.

Healthy female Marchantia polymorpha liverworts develop distinctive umbrella-shaped structures when they are ready to reproduce. Image by Caitlin Devor, University of Tokyo.

The reason why researchers studied liverwort is that it has a relatively simple genome structure, especially compared to the plants most commonly used in this sort of study, like tobacco and Arabidopsis. The entire genome of the liverwort species Marchantia polymorpha was also sequenced in 2017 which further aided this study.

RelatedPosts

World’s oldest flower found: it’s 125 million years old, and it raises some hard questions
After centuries of being dormant, “superb” bluebells bloom in English national park
Plants can “hear” pollinators and make more nectar when there’s buzzing around
Lifeless prions are capable of evolution

“Liverworts have the maximum power with the least structure,” said Professor Yuichiro Watanabe from the University of Tokyo’s Department of Life Sciences, an expert in plant molecular biology.

The team looked at microRNA — small molecules which regulate the activity of other genes. They found over 100 types of this molecule, and 8 of them were almost identical to microRNA found in Arabidopsis (which is a flowering plant).

This is particularly interesting. Why would the same gene-regulating mechanisms be found in an ancestral plant like liverwort and also in a modern plant which evolved hundreds of millions of years later?

“So, why keep them? We want to know what those shared microRNAs are doing, and liverworts are now a convenient model for us to investigate,” said Watanabe.

They found that one of the common microRNAs was helping plants control the shift to the reproductive stage. To test that it was indeed responsible for this change, they engineered a modified version of this microRNA. This confirmed their theory, and what happened was pretty weird: these modified liverworts produced reproductive cells on their vegetative tissues, rather than exhibiting normal growth.

“This was amazing to us. Those liverworts skipped some part of the reproductive process and the body itself becomes the reproductive organ,” said Watanabe.

Liverworts normally sprout distinctive male (top row, left) and female (bottom row, left) structures when they reproduce. When researchers genetically modify the plants to lack microRNA156/529, the plants develop reproductive organs on their vegetative structures, which are called thalli. Normal thalli (center) are solid green with smooth edges. MicroRNA156/529 knockout male thalli (top right) are transparent at the edges and microRNA156/529 knockout female thalli (bottom right) develop irregular edges. Image credit: Tsuzuki et al., 2019.

Watanabe imagines that in the future, farmers could measure the amount of microRNA in crops to predict harvest times.

“We hope our results inspire others to develop new applications for plant reproduction,” said Watanabe.

Journal Reference: Tsuzuki et al., 2019, DOI: 10.1016/j.cub.2019.07.084.

Tags: flowerliverwortplantrna

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Biology

Plants can “hear” pollinators and make more nectar when there’s buzzing around

byMihai Andrei
2 weeks ago
Biology

How Some Flowers Evolved the Grossest Stench — and Why Flies Love It

byMihai Andrei
1 month ago
Home science

Gardening Really Is Good for You, Science Confirms

byAlexandra Gerea
2 months ago
Health

Scientists Discover RNA, Not DNA, Is Behind the Pain and Redness of Sunburn

byTibi Puiu
5 months ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.