ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Physics

World record wireless transmission of 100 Gbit/s achieved

Tibi PuiubyTibi Puiu
October 17, 2013
in Physics, Research, Technology
A A
Share on FacebookShare on TwitterSubmit to Reddit

German researchers at the Karlsruhe Institute of Technology (KIT) have achieved a new world record for wireless data transmission after they successfully reached  100 gigabits/second over a distance of 20 meters and  at a frequency of 237.5 GHz. This translates into a  transfer rate of 12.5 gigabytes per second – equivalent to exchanging the contents of a blue-ray disk or of five DVDs between two devices by radio within two seconds only! The previous record, achieved by the same KIT researchers, was of 40 Gbps.

For their experiment, the scientists used the latest photonic and electronic technologies.  First, the radio signals are generated by means of an optical method, which involves superimposing two laser signals of different frequencies. The resulting electrical signal has a frequency equal to the frequency difference of the two optical signals – 237.5 GHz. Several bits are combined by so-called data symbols and transmitted at the same time. Upon transmission, the radio signals are received by active integrated electronic circuits.

Setup for the world record of wireless data transmission at 100 gigabits per second: The receiver unit (left) receives the radio signal that is recorded by the oscilloscope (right). (Photo: KIT)
Setup for the world record of wireless data transmission at 100 gigabits per second: The receiver unit (left) receives the radio signal that is recorded by the oscilloscope (right). (Photo: KIT)

The radio signals are transmitted using  an ultra-broadband so-called photon mixer made by the Japanese company NTT-NEL.  The millimeter-wave electrical signal is then radiated via an antenna, while a semiconductor chip  that can cope with advanced modulation formats, like these huge working frequencies, translates the signal. As a result, the radio link can be integrated into modern optical fiber networks in a bit-transparent way.

“It is a major advantage of the photonic method that data streams from fiber-optical systems can directly be converted into high-frequency radio signals,” Professor Jürg Leuthold says. He proposed the photonic extension that was realized in this project. The former head of the KIT Institute of Photonics and Quantum Electronics (IPQ) is now affiliated with ETH Zurich. “This advantage makes the integration of radio relay links of high bit rates into optical fiber networks easier and more flexible.“ In contrast to a purely electronic transmitter, no intermediate electronic circuit is needed. “Due to the large bandwidth and the good linearity of the photon mixer, the method is excellently suited for transmission of advanced modulation formats with multiple amplitude and phase states. This will be a necessity in future fiber-optical systems,” Leuthold adds.

In the laboratory experiment, radio relay transmission has covered a distance of up to 20 m already. (Photo: KIT)
In the laboratory experiment, radio relay transmission has covered a distance of up to 20 m already. (Photo: KIT)

The research was part of the “Millilink” project which aims to  bring broadband internet connections to rural and under-connected areas.

“Our project focused on integration of a broadband radio relay link into fiber-optical systems,” Professor Ingmar Kallfass says. He coordinated the “Millilink” project under a shared professorship funded by the Fraunhofer Institute for Applied Solid State Physics (IAF) and the Karlsruhe Institute of Technology (KIT). Since early 2013, he has been conducting research at Stuttgart University. “For rural areas in particular, this technology represents an inexpensive and flexible alternative to optical fiber networks, whose extension can often not be justified from an economic point of view.”

The KIT researchers are confident they can scale their technique and increase data rate even further. They consider a 1 terabit per second transfer to be feasible!

 “By employing optical and electrical multiplexing techniques, i.e., by simultaneously transmitting multiple data streams, and by using multiple transmitting and receiving antennas, the data rate could be multiplied,” says Swen König from the KIT Institute of Photonics and Quantum Electronics (IPQ), who conceived and conducted the recent world-record experiment. “Hence, radio systems having a data rate of 1 terabit per second appear to be feasible.”

Findings were reported in Nature Photonics.

RelatedPosts

Nanodevice lets light waves travel infinitely fast. Theory of Relativity still in place
Infrared holographic imaging allows firefighters to see through flames
Scientists shuttle data at 1.125 Tbps or 50,000 more than your average UK broadband
Imaging in 3D using a single camera lens
Tags: broadbanddata transferopticsphotonicswireless

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Future

This Tiny Chip Could Supercharge the Entire Internet Making It 10 Times Faster

byTudor Tarita
3 weeks ago
Future

Taste of 6G: Scientists achieve wireless data transmission over 9,000 times faster than 5G

byTibi Puiu
9 months ago
Physics

Rube Goldberg: The beautiful and timeless appeal of complex, useless contraptions

byTibi Puiu
10 months ago
Science

Researchers Shatter Fiber-Optic Data Transfer Speed Record At 402 Tbps

byTibi Puiu
11 months ago

Recent news

great white shark

This Shark Expert Has Spent Decades Studying Attacks and Says We’ve Been Afraid for the Wrong Reasons

June 30, 2025

A Rocket Carried Cannabis Seeds and 166 Human Remains into Space But Their Capsule Never Made It Back

June 30, 2025

Ancient ‘Zombie’ Fungus Trapped in Amber Shows Mind Control Began in the Age of the Dinosaurs

June 30, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.