ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Research → Technology

Power cell that both generates and stores energy by-passes batteries

Tibi PuiubyTibi Puiu
December 7, 2012
in Science, Technology
A A
Share on FacebookShare on TwitterSubmit to Reddit
Georgia Tech researcher Zhong Lin Wang shows the tiny components of the new hybrid self-charging power cell that uses piezoelectric materials to directly convert mechanical energy to chemical energy  (c) Gary Meek
Georgia Tech researcher Zhong Lin Wang shows the tiny components of the new hybrid self-charging power cell that uses piezoelectric materials to directly convert mechanical energy to chemical energy (c) Gary Meek

Generating useful energy out of otherwise mundane activities has been a goal for scientists for many years. Bicycle dynamos that generate electrical current to power a headlight from the kinetic energy generated by the cyclist have been used since the turn of the last century. Modern approaches have gone to greater lengths, turning ones footsteps on special floor tiles into electricity or even charging laptops by converting the pressure applied by the user when typing.

If energy storage is a concern, however, all of these solutions need to adapt a system in which energy generation and storage are separate, the most common example being the traditional two-cell generator-storage system. Scientists at Georgia Institute of Technology, however, have developed a novel approach which allowed them to convert mechanical energy into chemical energy directly without an intermediate step. The  hybrid generator-storage cell, thus makes the need for a separate battery or storage unit redundant, greatly reducing weight. The cell stores the power until it is released as an electrical current.

(c)  Georgia Institute of Technology,
(c) Georgia Institute of Technology,

The hybrid power-generator cell is comprised of  a lithium-cobalt oxide (LiCoO2) cathode and a titanium dioxide anode (TiO2 nanotubes) separated by a PVDF film. Harnessing the piezoelectric effect, when pressure is applied to the cells, electric voltage is generated that moves lithium ions in the electrolyte from the cathode to the anode, charging the cell in the process.

Not only this, the approach is a lot more efficient too – the generator-storage cell will be as much as five times more efficient at converting mechanical energy to chemical energy as a traditional two-cell generator-storage system, according to Zhong Lin Wang, a Regents professor in the School of Materials Science and Engineering at the Georgia Institute of Technology.

“People are accustomed to considering electrical generation and storage as two separate operations done in two separate units,” he says. “We have put them together in a single hybrid unit to create a self-charging power cell, demonstrating a new technique for charge conversion and storage in one integrated unit.”

A slew of applications could open up for this hybrid cell. For one, considering its light weight, many kinetic activities could be harnessed, from smart tires that turn the pressure into electrical current, to very subtle devices that are powered by vibrations. Special boots or clothing systems could generate electricity to power mobile devices. Something like this could definitely prove useful to the military, and indeed it seems they’ve more than shown interest since funding for the research came from the Defense Advanced Research Projects Agency (DARPA), the US Air Force as well as the US Department of Energy, the National Science Foundation, and the Knowledge Innovation Program of the Chinese Academy of Sciences.

Findings were published in the journal Nano Letters.

source: Georgia Tech via Gizmag

RelatedPosts

Princeton student creates mini flying carpet
Nanotech powered by your breath
In the future: laptops powered by typing
Tags: piezoelectric

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Graduate Student Jian Shi and Materials Science and Engineering Assistant Professor Xudong Wang demonstrate a material that could be used to capture energy from respiration. (c) University of Wisconsin
Anatomy News

Nanotech powered by your breath

byTibi Puiu
14 years ago
Inventions

Princeton student creates mini flying carpet

byMihai Andrei
14 years ago
Inventions

In the future: laptops powered by typing

byTibi Puiu
14 years ago

Recent news

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

June 14, 2025

Women Rate Women’s Looks Higher Than Even Men

June 14, 2025

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.