ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

GE engineers 3D print mini jet engine, then power it to 33,000 RPMs

Printing your own mechanical parts or toys is really easy, not to mention fun, using a 3-D printer. But things get a bit trickier when you want to print the kind of parts that go into a car or airplane. Metal is a lot more complex to work with inside a 3D printer than polymers like ABS - the kind of film roles that get melted layer by layer to form a part of your liking once it cools down. Engineers at General Electric just demonstrated, however, that in practice it's not that complicated to print parts out of metal alloys as it sounds. The team used additive technology to build a fully functional jet engine, then test powered it to 33,000 RPMs. The company is already using 3-D printed fuel nozzles in its next-generation aircraft engines, slated to role out in 2016.

Tibi PuiubyTibi Puiu
May 14, 2015
in News, Technology
A A
Share on FacebookShare on TwitterSubmit to Reddit

3d printing

Printing your own mechanical parts or toys is really easy, not to mention fun, using a 3-D printer. But things get a bit trickier when you want to print the kind of parts that go into a car or airplane. Metal is a lot more complex to work with inside a 3D printer than polymers like ABS – the kind of film roles that get melted layer by layer to form a part of your liking once it cools down. Engineers at General Electric just demonstrated, however, that in practice it’s not that complicated to print parts out of metal alloys as it sounds. The team used additive technology to build a fully functional jet engine, then test powered it to 33,000 RPMs. The company is already using 3-D printed fuel nozzles in its next-generation aircraft engines, slated to role out in 2016.

3d printing metal tech

“We wanted to see if we could build a little engine that runs almost entirely out of additive manufacturing parts,” says one of the engineers. “This was a fun side project.”

The GE team planned, designed and built the engine over the course of a couple of years, in their spare time off from their main projects. In their lab at the GE Aviation’s Additive Development Center outside Cincinnati, they employed a next-generation technique that can make complex 3D structures by melting metal powder layer upon layer.

All these metal parts were 3D printed, then polished. Image: GE Aviation
All these metal parts were 3D printed, then polished. Image: GE Aviation

An airplane’s jet engine is of massive complexity, costs millions of dollars and involves hundreds of man hours to assemble. Since this was their first test run, the team tackled a much simpler design. They found the plans for an engine typically used in remote controlled model airplanes and adapted it for 3D printing. Each part was printed, polished then put in assembly; the final product measured  a foot long by about eight inches tall. They then mounted some control sensors, like those that measure exhaust gases, and put the engine inside a test cell that’s typically used to gauge performance for large-scale engines. They fired it up to 33,000 RPMs, showing that the part doesn’t break. The General Electric press release doesn’t specify however how many cycles the mini jet engine was subjected to.

GE aviation

Parts are typically made by casting or through traditional machine methods that cut parts out of larger pieces. The GE technique uses a laser and powdered metal to fuse new parts, layer by layer. The resulting parts can be made using much more complex geometries and different alloys unavailable otherwise. It also cuts material waste, but not necessarily expenses per part since this is still a fledgling technology.

RelatedPosts

Anthropologists recreate the face of a 9,000-year-old teenager
With Flink, researchers will be able to 3D print living minifactories
New 3D-printing process creates ligaments, tendons for transplant — paves the way for replacement organs
These cute, talking robot heads like gossip and could help us understand hearing better

“There are really a lot of benefits to building things through additive,” says Matt Benvie, spokesman for GE Aviation. “You get speed because there’s less need for tooling and you go right from a model or idea to making a part. You can also get geometries that just can’t be made any other way.”

Tags: 3d printing

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

A person is designing a 3D object on a tablet.
Environmental Issues

A Unique Light-Sensitive Resin Could Make 3D Printing Faster and Cleaner

byRupendra Brahambhatt
3 days ago
Concept image of 3D printed red blood cells.
Biology

This Injectable Ink Lets Doctors 3D Print Tissues Inside the Body Using Only Ultrasound

byRupendra Brahambhatt
3 weeks ago
Future

Japan 3D printed a train station. It only took 6 hours

byRupendra Brahambhatt
1 month ago
An image of the 3D printed nano lattice (left) and a cell of the lattice resting on a bubble (right)
Materials

This Tiny 3D Printed Material is as Strong as Steel but as Light as Styrofoam

byRupendra Brahambhatt
1 month ago

Recent news

A Chemical Found in Acne Medication Might Help Humans Regrow Limbs Like Salamanders

June 11, 2025

Everyone Thought ChatGPT Used 10 Times More Energy Than Google. Turns Out That’s Not True

June 11, 2025

World’s Smallest Violin Is No Joke — It’s a Tiny Window Into the Future of Nanotechnology

June 11, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.