ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Physics

A simple theory explains what dark matter might be made of

Tibi PuiubyTibi Puiu
June 11, 2013
in Physics, Research
A A
Share on FacebookShare on TwitterSubmit to Reddit

Most certainly, one of the top goals in physics today is proving the existence of dark matter – the elusive form of matter that makes up 85% of all matter in the Universe. Many theories have been proposed and tested, however to this day we only have glimpses and possible hints of dark matter. A newly proposed theory claims dark matter is constructed of particles that have an abnormal, donut-shaped electromagnetic field known as an anapole. The proposal was then analyzed thoroughly by a pair of theoretical physicists at Vanderbilt University: Professor Robert Scherrer and post-doctoral fellow Chiu Man Ho. Their results seem to back-up the theory; a theory  that is so elegant in its simplicity that it might actually be true.

Dark matter, as the name implies, is impossible to detect in normal conditions since it doesn’t absorb or emit light or energy. In fact, astronomical observations have basically ruled out the possibility that dark matter particles carry electrical charges. How do we know it exists then? Well, just because we can’t “see” dark matter, it doesn’t mean it’s not there. Observations have found there are consisting anomalies in the rotational rate of galactic clusters or that   the rate that stars rotate around individual galaxies is similarly out of sync. Clearly there’s a dramatic gravitational effect that can not be accounted to normal matter, and as such the abstract concept of “dark matter” serves as the best explanation we have at the moment for these anomalies.

“There are a great many different theories about the nature of dark matter. What I like about this theory is its simplicity, uniqueness and the fact that it can be tested,” said Scherrer.

 

Comparison of an anapole field with common electric and magnetic dipoles. The anapole field, top, is generated by a toroidal electrical current. As a result, the field is confined within the torus, instead of spreading out like the fields generated by conventional electric and magnetic dipoles. (Michael Smeltzer / Vanderbilt)
Comparison of an anapole field with common electric and magnetic dipoles. The anapole field, top, is generated by a toroidal electrical current. As a result, the field is confined within the torus, instead of spreading out like the fields generated by conventional electric and magnetic dipoles. (Michael Smeltzer / Vanderbilt)

Scherrer and Ho suggest that dark matter may be constructed of a type of basic particle known as the Majorana fermion – a type of particle like the electron and quark, which are the basic building blocks of matter. The particle’s existence was predicted in the 1930′s, however so far it has eluded detection in particle accelerators.

The Majorana is of great interest to physicists because it’s been predicted to be electrically neutral. This is important to note since dark matter don’t contain electrical charges, but might possess electric or magnetic dipole.  In their paper, Scherrer and Ho have shown that these Majorana fermions are uniquely adapted to have an anapole, which causes the particles to have properties that vary from those of particles that have the more common fields possessing two poles. This would serve to explain why the particles are so hard to detect.

“Most models for dark matter assume that it interacts through exotic forces that we do not encounter in everyday life. Anapole dark matter makes use of ordinary electromagnetism that you learned about in school — the same force that makes magnets stick to your refrigerator or makes a balloon rubbed on your hair stick to the ceiling,” said Scherrer. “Further, the model makes very specific predictions about the rate at which it should show up in the vast dark matter detectors that are buried underground all over the world. These predictions show that soon the existence of anapole dark matter should either be discovered or ruled out by these experiments.”

 

According to Ho, “fundamental symmetries of nature” prevent Majorana fermions from obtaining any electromagnetic properties except the anapole. Particles with familiar electrical and magnetic dipoles, interact with electromagnetic fields even when they are stationary. Particles with anapole fields don’t. They must be moving before they interact and the faster they move the stronger the interaction. As a result, anapole particles would have been have been much more interactive during the early days of the universe and would have become less and less interactive as the universe expanded and cooled. Because dark matter is moving so much more slowly at the present day, and because the anapole interaction depends on how fast it moves, these particles would have escaped detection so far, but only just barely.

RelatedPosts

Huge Dark Energy survey charts largest 3D map of the universe stretching 11 billion years. The results could change physics
Astronomers find the most distant star ever, looking through a galactic magnifying glass
The most accurate map of the Universe suggests it’s ‘flat’ and infinite
What Is Dark Energy?

The researchers’ findings were reported in a paper published in the journal Physics Letters B. 

Tags: dark energydark matter

Share2TweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

Astronomers Say They Finally Found Half the Universe’s Matter. It was Missing In Plain Sight

byTibi Puiu
2 months ago
Astronomy

Scientists Take “Baby Picture” of the Infant Universe and Then Weigh It. Here’s What Its First 380,000 Years Tell Us

byMihai Andrei
3 months ago
News

Black Holes Might Not Be Cosmic Dead-Ends But Rather the Beginning Of White Holes

byTibi Puiu
3 months ago
Science

James Webb Telescope Uses Cosmic “Magnifying glass” to Detect Stars 6.5 Billion Light-Years Away

byJordan Strickler
5 months ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.