ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Chemistry

Scientists sober up mice with novel enzyme nano-parcels

Tibi PuiubyTibi Puiu
February 18, 2013
in Chemistry, Research, Studies
A A
Share on FacebookShare on TwitterSubmit to Reddit

A team of international researchers from US and China have employed a novel method to link enzymes together and then encapsulate them in a polymer shell. This enables the enzymes to work sequentially in chemical reactions, just like in nature. To illustrate their enzyme batch, a group of mice were intoxicated with alcohol and then injected with a packaged enzyme complex that metabolises alcohol. Those injected with the package dramatically sobered up within a few hours, while non-injected mice laid drunk as a skunk.

“In eukaryotic cells, most enzymes do not freely diffuse within the cytosol, but are spatially defined within subcellular organelles or closely co-localised as enzyme complexes along with other enzymes,” explains team member Yunfeng Lu, of the University of California, Los Angeles. “In consecutive reactions catalysed by multiple enzymes, such close confinement minimises the diffusion of intermediates among the enzymes, enhancing overall reaction efficiency and specificity. Meanwhile, toxic intermediates generated during a metabolic process are promptly eliminated by the nearby enzymes co-localised within the confined structures.”

Delivering a set of complex enzymes in the right order is very challenging, and typically implies  fabrication of delivery systems, such as liposomes or nano-carriers, first and then the enzymes are encapsulated into the carriers passively. In the method employed by the researchers, however, an alternate, more neat route is taken.

he required enzymes are tied together using a DNA tether before being coated in a thin layer of polyacrylamide © NPG
he required enzymes are tied together using a DNA tether before being coated in a thin layer of polyacrylamide © NPG

Lu and colleagues devised a way to bring various enzymes together and spin a sort of polymer cocoon around them. The first step is to identify inhibitors – molecules that will specifically attach to a given enzyme. A number of different inhibitors – each specific to its own enzyme – are then linked by a string of DNA. In the presence of the different enzymes, each inhibitor hooks its own enzyme, trapping them around the DNA scaffold and creating a complex. Gentle heating then removes the DNA scaffold and inhibitors, leaving the functioning enzymes encased within the polymer.

The concept was demonstrated with a complex of alcohol oxidase and catalase which can remove alcohol from the bloodstream – quite handy, I might add. The alcohol oxidase reacts with ethanol and oxidizes it into acetaldehyde and hydrogen perodixe. Now, the latter is toxic, so if you had only tried alcohol oxidase then you would have been in a lot of trouble. Luckily, the second enzyme, catalase, breaks up the hydrogen peroxide into oxygen and water.

The complex was tried in mice, subsequently fed with alcohol. Naturally, the animals became intoxicated rapidly and fainted within minutes. Some of the mice were injected with the complex and these were found to have recovered a lot faster than those who hadn’t been injected. More exactly, blood alcohol levels were reduced by around 35% over three hours. Neat trick isn’t it?

Now, don’t be fooled into thinking the scientists were just looking for ways to get drunk, sober, drunk, sober, and so on in a repeating fashion – thought this too might have been a goal. As well as providing a route for a possible antidote to alcohol poisoning, Lu says that the method can be generalised for different combinations of enzymes. ‘Through judicious choice of enzymes, we expect to be able to construct a novel class of complexes with programmable, complementary or synergistic functions.’

RelatedPosts

Alcohol and rapid antidepressants share the same brain pathway, which might explain a lot of things
Blood pressure drug also improves alcohol withdrawal symptoms
Parents giving alcohol too soon to kids, researchers say
Pot twist: Cannabis component helps fight addiction in new study

Findings were reported in the journal Nature Nanotechnology.

Tags: alcoholenzyme

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

The injectable drug Ozempic is shown Saturday, July 1, 2023, in Houston. (AP Photo/David J. Phillip)
Health

Ozempic Users Are Seeing a Surprising Drop in Alcohol and Drug Cravings

byAlexandra Gerea
1 month ago
Health

Patients on Weight Loss Drugs Like Wegovy May Say They Just Don’t Want to Drink Anymore

byTudor Tarita
2 months ago
Animals

Scientists filmed wild chimpanzees sharing alcohol-laced fermented fruit for the first time and it looks eerily familiar

byTibi Puiu
3 months ago
News

Over 1 in 3 Americans hurt by “second-hand drinking”

byMihai Andrei
5 months ago

Recent news

mars

Quakes on Mars Could Support Microbes Deep Beneath Its Surface

July 31, 2025

Scientists Discover Life Finds a Way in the Deepest, Darkest Trenches on Earth

July 31, 2025

Solid-State Batteries Charge in 3 Minutes, Offer Nearly Double the Range, and Never Catch Fire. So Why Aren’t They In Your Phones and Cars Yet?

July 30, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.