ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Geology

Sahara might have been crossed by three large rivers the size of the Nile 100,000 years ago

Tibi PuiubyTibi Puiu
September 18, 2013
in Environment, Geology, Research
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Newly discovered dinosaur had bat-like wings… but could it fly?
Controversial study challenges tree of life and claims complex life first originated on land
Fossilized insects trapped in the act of mating for 165 million years [SFW]
Artifacts hint that modern human culture may have emerged in Africa 20,000 years earlier

When the Sahara comes to mind, lush greenery and gorgeous, fast flowing waters might be the last scenery that crosses you. Not too long ago (geological frame), however, the region known today as the Sahara may have been crossed by three giant rivers the size of the Nile, according to a recent palaeohydrological model made by researchers at Hull University, UK led by Professor Tom Coulthard. The paper also discusses the possibility whether one or more of these rivers might have been used as migration routes by early humans leaving central Africa.

Recent evidence reported by other studies suggest that the Sahara was once quite green, dotted with numerous lakes. Considering this, it’s reasonable to assume large flowing waters might have riddled the region in ancient times. Using climate models to estimate rainfall some 100,000 years ago, the Hull researchers constructed a new model which showed ancient monsoons formed 400 miles north of where they do today, spilling rain on mountains in the central Sahara. The huge amounts of water coupled with the terrain’s geometry could have offered the perfect conditions for three large rivers to surface, each approximately the size of the Nile,  also forming vast wetlands in what is now Libya.

 Simulated probability of surface water during the last interglacial. (c) PLOS ONE
Simulated probability of surface water during the last interglacial. (c) PLOS ONE

The westernmost of the three potential ancient Saharan rivers, referred in the paper as the Irharhar, represents the most likely route for human migration from Africa into Europe. The Irharhar river flows directly south to north, uniquely linking the mountain areas experiencing monsoon climates at these times to temperate Mediterranean environments where food and resources would have been abundant – clusters of archaeological sites in Algeria and Tunisia back up the idea, according to the paper published in the journal PLoS ONE.

Unfortunately any “foot prints” these ancient rivers might have left on the Earth are hopelessly buried underneath sand dunes.

Tags: paleontologysahara

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Biology

Paleontologists Discover “Goblin-Like” Predator Hidden in Fossil Collection

byTudor Tarita
2 months ago
Biology

Meet Mosura fentoni, the Bug-Eyed Cambrian Weirdo with Three Eyes and Gills in Its Tail

byMihai Andrei
3 months ago
Biology

Giant 160-million-year-old tadpole sheds new light on frog evolution

byMihai Andrei
10 months ago
Planet Earth

What is Sahara dust and why does it matters so much for the Earth

byMihai Andrei
3 years ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.