ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health → Anatomy News

Nanotech powered by your breath

Tibi PuiubyTibi Puiu
October 20, 2011
in Anatomy News, Health, Nanotechnology, Research, Technology
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

How butterflies have such a beautiful colour
These self-healing robot fish can gobble up the microplastics from our seas
Future devices will rewire themselves thanks to nanomaterial tech
The swarm is near: get ready for the flying microbots
Graduate Student Jian Shi and Materials Science and Engineering Assistant Professor Xudong Wang demonstrate a material that could be used to capture energy from respiration. (c) University of Wisconsin
Graduate Student Jian Shi and Materials Science and Engineering Assistant Professor Xudong Wang demonstrate a material that could be used to capture energy from respiration. (c) University of Wisconsin

At the nano scale, even the slightest of motions can be harnessed and transformed into useful work. Material science researchers  at the University of Wisconsin, for instance, have developed a very thin plastic belt capable of vibrating from low velocity fluid flow, such as one’s breath.

Made out of  polyvinylidene fluoride (PVDF), the microbelt not only vibrates but also entraps electrical charge in response to the mechanical stresses it undergoes – a simple application of the piezoelectric effect. Thus, it can generate much needed electrical energy just enough to power tiny devices.

Since the device only needs discrete motion to power it, one’s breath or blood flow would be more than enough; add the fact that PVDF is bio compatible and you’ve got yourself an ideal piece of biotech. Using a more improved variant of this technology, current biodevices such as pacemakers would no longer require replacement or new medical tiny devices could be powered by the self-regenerating energy.  In time, and with some improvements made to the process, the researchers believe that the PVDF can actually be thinned to a sub-micron measurement .

During testing, the device reached typical power levels in the order of millivolts, while reaching up to 6 volt during maximum airflow speeds. The vibrating microbelt was developed by Assistant Professor Xudong Wang, postdoctoral Researcher Chengliang Sun and graduate student Jian Shi.

“Basically, we are harvesting mechanical energy from biological systems,” Wang said. “The airflow of normal human respiration is typically below about two meters per second. We calculated that if we could make this material thin enough, small vibrations could produce a microwatt of electrical energy that could be useful for sensors or other devices implanted in the face.”

source

Tags: Health & Medicinenanotechnologypiezoelectric

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Future

World’s Smallest Violin Is No Joke — It’s a Tiny Window Into the Future of Nanotechnology

byTibi Puiu
2 months ago
Future

Researchers create contact lenses that let you see in the dark, even with your eyes closed

byMihai Andrei
3 months ago
Biology

Scientists put nanotattoos on frozen tardigrades and that could be a big deal

byMihai Andrei
4 months ago
Biology

Tiny “Water Bear” Protein Could Help Shield Cancer Patients From Radiation

byAlexandra Gerea
6 months ago

Recent news

You Can Now Buy a Humanoid Robot for Under $6,000 – Here’s What It Can Do

August 19, 2025

Volkswagen Wants You to Pay a Subscription to Access All the Car Features

August 19, 2025

The disturbing reason why Japan’s Olympic athletes wear outfits designed to block infrared

August 19, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.